首页 | 本学科首页   官方微博 | 高级检索  
     


Hydrogen separation from the H2/N2 mixture by using a single and multi-stage inorganic membrane
Authors:Kyeong Youl Jung  Jea-Hyun So  Seung Bin Park  Seung-Man Yang
Affiliation:(1) Department of Chemical Engineering, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong-gu, 305-701 Taejon, Korea
Abstract:The separation characteristics of hydrogen from a gas mixture were investigated by using a single and two-stage inorganic membrane. Three palladium impregnated membranes were prepared by using the sol-gel, hydrolysis, and soaking-and-vapor deposition (SVD) techniques. A two-stage gas separation system without a recycling stream was constructed to see how much the hydrogen separation factor would be increased. Numerical simulation for the separation system was conducted to predict the separation behavior for the multi-stage separation system and to determine the optimal operating conditions at which the highest separation factor is obtained. Gas separation through each prepared membrane was achieved mainly by Knudsen diffusion. The real separation factor for the H2/ N2 mixture was increased with the pressure difference and temperature for a single stage, respectively. For the twostage separation system, there was a maximum point at which the highest separation factor was obtained and the real hydrogen separation factor for H2/N2 mixture was increased about 40 % compared with a single stage separation. The numerical simulation for the single and two-stage separation system was in a good agreement with the experimental results. By numerical simulation for the three-stage separation system, which has a recycle stream and three membranes that have the same permeability and hydrogen selectivity near to the Knudsen value, it is clear that the hydrogen separation factors for H2/N2 mixture are increased from 1.8 to 3.65 and hydrogen can be concentrated up to about 80 %. The separation factors increased with increasing recycle ratio. Optimal operating conditions exist at which the maximum real separation factor for the gas mixture can be obtained for three-stage gas separation and they can be predicted successfully by numerical simulation.
Keywords:Inorganic Membrane  Hydrogen Separation  Multi-Stage Membrane
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号