首页 | 本学科首页   官方微博 | 高级检索  
     


Involvement of a residue at position 75 in the catalytic mechanism of a fungal aspartic proteinase, Rhizomucor pusilus pepsin. Replacement of tyrosine 75 on the flap by asparagine enhances catalytic efficiency
Authors:Park, Young-Nam   Aikawa, Jun-ichi   Nishiyama, Makoto   Horinouchi, Sueharu   Beppu, Teruhiko
Affiliation:Department of Biotechnology University of Tokyo Yayoi 1-1-1, Bunkyo-ku, Tokyo 113, Japan 1Institute of Physical and Chemical Research (RIKEN) Hirosawa 2-1, Wako-shi, Saitama 351-01 Japan 2Biotechnology Research Center, University of Tokyo Yayoi 1-1-1, Bunkyo-ku, Tokyo 113, Japan 4Department of Applied Biological Science, Nihon University Kame-ino, Fujisawa-shi, Kanagawa 252, Japan
Abstract:Residue 75 on the flap, a beta hairpin loop that partially coversthe active site cleft, is tyrosine in most members of the asparticproteinase family. Site-directed mutagenesis was carried outto investigate the functional role of this residue in Rhizomucorpusilus pepsin, an aspartic proteinase with high milk-clottingactivity produced by the fungus Rhizomucor pusillus. A set ofmutated enzymes with replacement of the amino acid at position75 by 17 other amino acid residues except for His and Gly wasconstructed and their enzymatic properties were examined. Strongactivity, higher than that of the wild-type enzyme, was foundin the mutant with asparagine (Tyr75Asn), while weak but distinctactivity was observed in Tyr75Phe. All the other mutants showedmarkedly decreased or negligible activity, less than 1/1000of that of the wild-type enzyme. Kinetic analysis of Tyr75Asnusing a chromogenic synthetic oligopeptide as a substrate revealeda marked increase in kcat with slight change in Km, resultingin a 5.6-fold increase in kcat/km. When differential absorptionspectra upon addition of pepstatin, a specific inhibitor foraspartic proteinase, were compared between the wild-type andmutant enzymes, the wild-type enzyme and Tyr75Asn, showing strongactivity, had spectra with absorption maxima at 280, 287 and293 nm, whereas the others, showing decreased or negligibleactivity, had spectra with only two maxima at 282 and 288 nm.This suggests a different mode of the inhibitor binding in thelatter mutants. These observations suggest a crucial role ofthe residue at position 75 in enhancing the catalytic efficiencythrough affecting the mode of substrate-binding in the asparticproteinases.
Keywords:aspartic proteinase/  catalytic mechanism/  Rhizomucor pusillus pepsin/  site-directed mutagenesis
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号