首页 | 本学科首页   官方微博 | 高级检索  
     


On the sliding and profile of a liquid droplet on a rotating disk
Authors:Kenji Katoh  Mituyoshi Higashine  Tatsuro Wakimoto  Ryohei Masuda
Affiliation:Department of Mechanical Engineering, Osaka City University, Japan
Abstract:This theoretical and experimental study was conducted to investigate the critical condition at which a liquid droplet starts to move on a rotating disk. The critical rotational speed ω was theoretically calculated based on the force balance between the surface tension and the centrifugal force, where ω was experimentally measured for each combination between three kinds of test plates and test liquids. The movements of droplets were judged from the careful observation of infinitesimal motion of the three‐phase contact line. The calculated rotational speeds agreed well with measured ones for arbitrary contact angle when the droplets were set on the plate. The three‐dimensional surface profiles of droplets were calculated from the approximate Laplace equation in which the contact line was assumed as the combination of two ellipses with different ratio of measure to minor axis. The measured profiles on the rotating disk were approximated well by the method proposed in this study. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20276
Keywords:droplet  contact angle  rotating disk  surface tension  wettability  condensation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号