首页 | 本学科首页   官方微博 | 高级检索  
     

模拟退火粒子群优化双目立体测量方法
引用本文:芮 挺,马光彦,廖 明,甄树新. 模拟退火粒子群优化双目立体测量方法[J]. 计算机工程与应用, 2011, 47(22): 160-163
作者姓名:芮 挺  马光彦  廖 明  甄树新
作者单位:解放军理工大学 工程兵工程学院,南京 210007
基金项目:国家自然科学基金No.50608069;解放军理工大学工程兵工程学院基金~~
摘    要:摄像机标定和三维信息恢复是实现双目立体测量的关键问题。提出了利用模拟退火粒子群优化算法在解空间的搜索能力,求解摄像机标定模型和三维信息恢复模型两个超定方程的方法,讨论了目标函数的建立方式及算法实现步骤。通过实验,分析了该方法求解的绝对误差与相对误差,实验证实了算法的有效性。

关 键 词:非线性模型  摄像机标定  三维信息恢复  模拟退火粒子群优化  
修稿时间: 

Binocular three-dimensional measurement based on simulated annealing Particle Swarm Optimization
RUI Ting,MA Guangyan,LIAO Ming,ZHEN Shuxin. Binocular three-dimensional measurement based on simulated annealing Particle Swarm Optimization[J]. Computer Engineering and Applications, 2011, 47(22): 160-163
Authors:RUI Ting  MA Guangyan  LIAO Ming  ZHEN Shuxin
Affiliation:Engineering Institute of Engineering Corps,PLA University of Science & Technology,Nanjing 210007,China
Abstract:Camera calibration and three-dimensional information recovery are key issues of binocular three-dimensional measurement.The simulated annealing particle swarm optimization algorithm is used to get the solution of tow overdetermined equations which are camera calibration model and three-dimensional information recovery model is proposed.The method to establish objective function and algorithm steps is discussed in this paper.Experimental results demonstrate the accuracy of the proposed algorithm both in absolute error and relative error.
Keywords:nonlinear model  camera calibration  three-dimensional information recovery  simulated annealing particle swarm optimization
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号