首页 | 本学科首页   官方微博 | 高级检索  
     

基于肌电信号的手部动作模式识别新思路
引用本文:王焕灵,尤波,黄玲,杨大鹏. 基于肌电信号的手部动作模式识别新思路[J]. 计算机工程与应用, 2011, 47(21): 166-169. DOI: 10.3778/j.issn.1002-8331.2011.21.043
作者姓名:王焕灵  尤波  黄玲  杨大鹏
作者单位:1.哈尔滨理工大学 自动化学院,哈尔滨 150080 2.哈尔滨工业大学 机器人技术与系统国家重点实验室,哈尔滨 150001
基金项目:“863”重大项目子课题,哈尔滨市科技创新人才基金,黑龙江省教育厅研究生创新科研基金
摘    要:为了更好地识别手部动作,提出了一种新思路,将单个手指的状态作为识别目标集。采集常用手部联合动作的6路表面肌电信号,以单个手指的状态为基准将动作合理规划,提取各通道样本均值构造特征向量,设计3个并行BP神经网络,从联合动作样本中学习单个手指的状态,使得分类基数小,从而降低分类的复杂度,克服了传统多分类方法中需要采集动作多的缺点。实验结果表明,采集12种手部动作的肌电信号,将手部动作合理简化为手指动作后,利用手指的状态来训练神经网络,就能够识别出手指的3个状态的所有组合动作,即所有常用的18种手部联合动作。

关 键 词:表面肌电信号(sEMG)  模式识别  误差反向传播(BP)神经网络  
修稿时间: 

New thought in hand gestures recognition based on sEMG
WANG Huanling,YOU Bo,HUANG Ling,YANG Dapeng. New thought in hand gestures recognition based on sEMG[J]. Computer Engineering and Applications, 2011, 47(21): 166-169. DOI: 10.3778/j.issn.1002-8331.2011.21.043
Authors:WANG Huanling  YOU Bo  HUANG Ling  YANG Dapeng
Affiliation:1.School of Automation,Harbin University of Science and Technology,Harbin 150080,China 2.State Key Lab of Robotics and System,Harbin Institute of Technology,Harbin 150001,China
Abstract:For better recognizing hand gestures,this paper reports a new thought that has taken the single finger's condition as recognizing target set.Six groups'sEMG of commonly used hand gestures are gathered,which are planned reasonably taking the single finger's condition as datum.Each channel's sample means are used to constitute feature eigenvector.Three parallel BP neural networks are designed,which can study the single finger's condition from the hand gesture sample.The method makes the classified cardinal number to be small,thus reduces the complexity of classified order,and overcomes the shortcomings,which need to gather the movement many enough in the traditional multi-taxonomic approach.The experimental result indicates that:the sEMG of 12 kinds of hand movements are gathered;the hand movement is simplified reasonably to the finger movement,and the neural network is trained using finger's condition.All composite movements of finger's three conditions can be distinguished,that is to say,all commonly used 18 kinds of hand gestures have been classified.
Keywords:surface Electromyograms(sEMG)  pattern recognition  Back Propagation(BP)neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号