首页 | 本学科首页   官方微博 | 高级检索  
     


Noncoherent Synchronization of UWB-IR Multiple-Antenna Multipath Channels
Abstract: This paper deals with the maximum-likelihood (ML) noncoherent data-aided (e.g., no blind) synchronization of multiple-antenna ultrawideband impulse-radio (UWB-IR) terminals that operate over broadband channels and are affected by multipath fading with a priori unknown number of paths and path-gain statistics. The synchronizer that we developed achieves the ML data-aided joint estimate of the number of paths and their arrival times (e.g., time delays), without requiring any a priori knowledge and/or a posteriori estimate of the amplitude (e.g., module and sign) of the channel gains. The ultimate performance of the proposed synchronizer is evaluated (in closed form) by developing the corresponding CramÉr–Rao bound (CRB), and the analytical conditions for achieving this bound are provided. The performance gain for the synchronization accuracy of multipath-affected UWB-IR signals arising from the exploitation of the multiple-antenna paradigm is (analytically) evaluated. Furthermore, a low-cost sequential implementation of the proposed synchronizer is detailed. It requires an all-analog front-end circuitry composed of a bank of sliding-window correlators, whose number is fully independent from the number of paths comprising the underlying multiple-antenna channel. Finally, the actual performance of the proposed synchronizer is numerically tested under both the signal acquisition and tracking operating conditions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号