首页 | 本学科首页   官方微博 | 高级检索  
     

求解资源受限项目调度问题的约束规划/数学规划混合算法
引用本文:刘士新,宋健海. 求解资源受限项目调度问题的约束规划/数学规划混合算法[J]. 控制理论与应用, 2011, 28(8): 1113-1120
作者姓名:刘士新  宋健海
作者单位:1. 东北大学信息科学与工程学院流程工业综合自动化国家重点实验室,辽宁沈阳,110819
2. 上海宝信软件股份有限公司,上海,201900
基金项目:国家自然科学基金资助项目(71021061, 70771020);“863”计划/先进制造技术领域专题资助项目(2007AA04Z194); 中央高校基础科研业务费资助项目(N100504001).
摘    要:利用约束规划(constraintprogramming,CP)与数学规划(mathematicalprogramming,MP)结合的方法求解调度问题已经获得了一些较好的研究成果,正成为调度问题研究领域的一个新的热点研究方向.本文针对求解资源受限项目调度问题(RCPSP)的整数规划模型,设计了基于CP技术的问题和模型预处理方法,证明了整数规划模型的有效不等式定理,提出了通过将项目子网络图转化为加权最大团问题求解后获得有效不等式的方法.引用标准问题库PSPLIB中的一组典型问题进行求解实验,结果表明本文提出的有效不等式可以明显改进模型的求解质量和时间性能.论文最后对实验结果进行了深入讨论,讨论了未来的研究方向.

关 键 词:项目调度  资源受限  整数规划  约束规划  有效不等式  最大团问题
收稿时间:2010-02-05
修稿时间:2010-10-09

Combination of constraint programming and mathematical programming for solving resources-constrained project-scheduling problems
LIU Shi-xin and SONG Jian-hai. Combination of constraint programming and mathematical programming for solving resources-constrained project-scheduling problems[J]. Control Theory & Applications, 2011, 28(8): 1113-1120
Authors:LIU Shi-xin and SONG Jian-hai
Affiliation:School of Information Sciences & Engineering, Northeastern University, State Key Laboratory of Synthetical Automation for Process Industries,Shanghai Baosight Software Limited Company
Abstract:Combining constraint programming(CP) and mathematical programming(MP) to solve scheduling problems has been an interesting topic for researchers, and promising results are obtained. We propose a preprocessing approach for solving resource-constrained project-scheduling problems(RCPSP) with integer programming(IP) model, and prove an effective inequality theory for the IP model. The effective inequality can be obtained by solving a maximum clique problem which is built on a sub-network of the original project. A detailed computational experiment is performed using the well-known standard instances in PSPLIB. Computational results show that the proposed effective inequality remarkably improves the performances of the IP model. Finally, the computational results are analyzed and future research directions are discussed.
Keywords:project scheduling   resource-constrained   integer programming   constraint programming   effective inequality   maximum clique problem
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《控制理论与应用》浏览原始摘要信息
点击此处可从《控制理论与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号