首页 | 本学科首页   官方微博 | 高级检索  
     


Tau self-association: stabilization with a chemical cross-linker and modulation by phosphorylation and oxidation state
Authors:RP Guttmann  AC Erickson  GV Johnson
Affiliation:Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham 35294-0017.
Abstract:tau is a major component of paired helical filaments found in the neurofibrillary tangles of Alzheimer's diseased brain. However, the mechanism or mechanisms responsible for the association of tau to form these aggregates remains unknown. In this study, the role of intermolecular disulfide bonds in the formation of higher order oligomers of bovine tau and the human recombinant tau isoform T3 was examined using the chemical cross-linking agent disuccinimidylsuberate (DSS). In addition, the role of phosphorylation and oxidation state on the in vitro self-association of tau was studied using this experimental model. Stabilization of tau-tau interactions with DSS indicated that intermolecular disulfide bonds probably play a predominant role in dimer formation, but the formation of higher order oligomers of tau cannot be attributed to these bonds alone. tau-tau interactions were significantly decreased either by blocking Cys residues or by exposing the tau to a reducing (nitrogen and dithiothreitol), instead of an oxidizing, environment. tau self-association was also significantly decreased by prior phosphorylation with calcium/calmodulin-dependent protein kinase II. Phosphorylation by cyclic AMP-dependent protein kinase or dephosphorylation by alkaline phosphatase did not alter tau self-assembly. These data suggest a role for several factors that may modulate tau self-association in vivo.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号