首页 | 本学科首页   官方微博 | 高级检索  
     


Heat and fluid flow characteristics of gases in micropipes
Affiliation:1. Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada;2. Multiphase Systems Research Lab, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11155/4563, Tehran, Iran
Abstract:In this study, laminar forced convective heat transfer of a Newtonian fluid in a micropipe is analyzed by taking the viscous dissipation effect, the velocity slip and the temperature jump at the wall into account. Hydrodynamically and thermally fully developed flow case is examined. Two different thermal boundary conditions are considered: the constant heat flux (CHF) and the constant wall temperature (CWT). Either wall heating (the fluid is heated) case or wall cooling (the fluid is cooled) case is examined. The Nusselt numbers are analytically determined as a function of the Brinkman number and the Knudsen number. Different definitions of the Brinkman number based on the definition of the dimensionless temperature are discussed. It is disclosed that for the cases studied here, singularities for the Brinkman number-dependence of the Nusselt number are observed and they are discussed in view of the energy balance.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号