首页 | 本学科首页   官方微博 | 高级检索  
     


Application of hydrophilic finished of synthetic fabrics coated with CMC/acrylic acid cured by electron beam irradiation in the removal of metal cations from aqueous solutions
Authors:Sayeda M Ibrahim
Abstract:Modified textile fabrics were used to remove Cu+2 and Cr+3 ions from aqueous solutions. For this purpose, modified Nylon‐6, polyester woven and knitted fabrics were prepared by coating the surface with a thin layer of aqueous solution of carboxymethyl cellulose (CMC) and acrylic acid (AAc) of thickness 25 μm. Radiation crosslinking of the coated layer was carried out by electron beam irradiation with a constant dose of 30 kGy. Morphology of the coated fabrics was examined by scanning electron microscope (SEM) which indicated the compatibility between the coated layer and fabrics. Properties attributed to the hydrophilicity, especially water uptake and weight loss before and after several washing cycles were followed up. The effect of AAc concentration on the hydrophilic properties of the coated fabrics was studied. A considerable enhancement in water uptake has been attained on increasing AAc content in solution in case of nylon‐6 followed by polyester woven followed by polyester knitted fabrics. The performances of the modified textile fabrics were evaluated for the recovery of Cu+2 and Cr+3 from aqueous solution. The metal ion absorption efficiency of the modified textile fabrics was measured using UV Spectrophotometer analysis and EDX. Parameters affecting the efficiency of these textile fabrics in the removal of metal ions from aqueous solution namely, concentration of AAc and the immersion time were studied. It was found that there was a marked increase in the recovery of metal ions on increasing both immersion time and concentration of AAc. This study evidences that the modified textile fabrics can be used for the purpose of removal of some heavy metals such as Cu and Cr. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010
Keywords:carboxy methyl cellulose  acrylic acid  hydrophilicity  electron beam
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号