首页 | 本学科首页   官方微博 | 高级检索  
     


Flame retardance and mechanical properties of a polyamide 6/polyethylene/surface‐modified metal hydroxide ternary composite via a master‐batch method
Authors:Shu‐Mei Liu  Jun‐Yi Huang  Zhi‐Jie Jiang  Chen Zhang  Jian‐Qing Zhao  Jun Chen
Abstract:Surface‐modified aluminum hydroxide and magnesium hydroxide mixtures (SAMHs) were filled with linear low‐density polyethylene (LLDPE) with a maleic anhydride grafted polyethylene (PE) compatibilizer to produce a SAMH master batch, which was then dispersed in polyamide 6 (PA6) to yield a PA6/PE/SAMH (50/20/30 by weight ratio) ternary composite. Through such a master‐batch method, an effective flame retardance UL94 V‐0 rating at a 3.2 mm thickness with a 33% limiting oxygen index was achieved. The flame‐retardance mechanism of the ternary composite was investigated by thermogravimetric analysis and scanning electron microscopy/energy dispersive X‐ray spectroscopy analysis. A cocontinuous PA6/PE polymer host and a preferential dispersion of SAMH particles in the matrix induced the formation of a compact flame‐resistant char layer and a high residue rate during burning; this resulted in the desired flame retardance of the ternary composite. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010
Keywords:dispersions  flame retardance  polyamides  polyethylene (PE)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号