首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进YOLOv2算法的交通标志检测
引用本文:张传伟,李妞妞,岳向阳,杨满芝,王睿,丁宇鹏. 基于改进YOLOv2算法的交通标志检测[J]. 计算机系统应用, 2020, 29(6): 155-162
作者姓名:张传伟  李妞妞  岳向阳  杨满芝  王睿  丁宇鹏
作者单位:西安科技大学机械工程学院,西安710054;西安科技大学机械工程学院,西安710054;西安科技大学机械工程学院,西安710054;西安科技大学机械工程学院,西安710054;西安科技大学机械工程学院,西安710054;西安科技大学机械工程学院,西安710054
基金项目:国家自然科学基金(51974229, 51805428); 陕西省自然科学基础研究计划(20018JQ5205)
摘    要:针对YOLOv2算法实际检测到的小尺寸交通标志质量不佳,识别率低,实时性差的问题,提出一种基于改进YOLOv2的交通标志检测方法.首先,通过直方图均衡化、BM3D对图像增强以获取高质量图像;接着,将网络顶层卷积层输出的特征图进行精细划分,得到高细粒度的特征图,以检测高质量、小尺寸的交通标志;最后,采用归一化及优化置信度评分比例对损失函数进行改进.在结合CCTSD (中国交通标志检测数据集)和TT100K数据集的新数据集上进行实验,与YOLOv2网络模型相比,经过改进后的网络识别率提高了8.7%,同时模型的识别速度提高了15 FPS.实验结果表明:所提方法能够对小尺寸交通标志进行精准检测.

关 键 词:无人驾驶  交通标志检测  YOLOv2  BM3D  损失函数
收稿时间:2019-10-14
修稿时间:2019-11-07

Traffic Sign Recognition Based on Improved YOLOv2 Algorithm
ZHANG Chuan-Wei,LI Niu-Niu,YUE Xiang-Yang,YANG Man-Zhi,WANG Rui,DING Yu-Peng. Traffic Sign Recognition Based on Improved YOLOv2 Algorithm[J]. Computer Systems& Applications, 2020, 29(6): 155-162
Authors:ZHANG Chuan-Wei  LI Niu-Niu  YUE Xiang-Yang  YANG Man-Zhi  WANG Rui  DING Yu-Peng
Abstract:The small-sized traffic signs actually detected by the YOLOv2 algorithm are of poor quality, low recognition rate, and poor real-time performance. This study proposes a traffic sign detection method based on improved YOLOv2. Firstly, the image is enhanced by histogram equalization and BM3D method, with high-quality images. Moreover, the top-level convolutional layer output feature map of the network is finely divided to obtain fine-grained feature maps to detect high-quality, small-sized traffic signs. Finally, the loss function is improved by normalization and optimization of the confidence score ratio method. Experiments were carried out on a new data set combining CCTSD (China Traffic Sign Detection Dataset) and TT100K dataset. Compared with the YOLOv2 network model, the network recognition rate increases by 8.7% and the recognition speed of the model is improved by 15 FPS. Experimental results show that small-sized traffic signs can be accurately detected by proposed method.
Keywords:driverless  traffic sign detection  YOLOv2  BM3D  loss function
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号