首页 | 本学科首页   官方微博 | 高级检索  
     


Chemo-mechanical modeling for prediction of alkali silica reaction (ASR) expansion
Authors:Sté  phane Multon,Alain Sellier,Martin Cyr
Affiliation:Université de Toulouse, UPS, INSA, LMDC (Laboratoire Matériaux et Durabilité des Constructions), 135, avenue de Rangueil, F-31 077 Toulouse Cedex 04, France
Abstract:The effect of the size of the aggregate on ASR expansion has already been well illustrated. This paper presents a microscopic model to analyze the development of ASR expansion of mortars containing reactive aggregate of different sizes. The attack of the reactive silica by alkali was determined through the mass balance equation, which controls the diffusion mechanism in the aggregate and the fixation of the alkali in the ASR gels. The mechanical part of the model is based on the damage theory in order to assess the decrease of stiffness of the mortar due to cracking caused by ASR and to calculate the expansion of a Representative Elementary Volume (REV) of concrete. Parameters of the model were estimated by curve fitting the expansions of four experimental mortars. The paper shows that the decrease of expansion with the size of the aggregate and the increase of the expansion with the alkali content are reproduced by the model, which is able to predict the expansions of six other mortars containing two sizes of reactive aggregate and cast with two alkali contents.
Keywords:Alkali-silica reaction (ASR)   Particle size   Alkali content   Expansion   Model
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号