首页 | 本学科首页   官方微博 | 高级检索  
     

云计算环境下任务调度算法的研究
引用本文:李菡薏,陈家琪. 云计算环境下任务调度算法的研究[J]. 电子科技, 2015, 28(11): 43
作者姓名:李菡薏  陈家琪
作者单位:(上海理工大学 光电信息与计算机工程学院,上海 200093)
基金项目:上海市教委科研创新基金资助项目(12zz146)
摘    要:在云计算环境中存在庞大的任务数,为了能更加高效地完成任务请求,如何进行有效地任务调度是云计算环境下实现按需分配资源的关键。针对调度问题提出了一种基于蚁群优化的任务调度算法,该算法能适应云计算环境下的动态特性,且集成了蚁群算法在处理NP-Hard问题时的优点。该算法旨在减少任务调度完成时间。通过在CloudSim平台进行仿真实验,实验结果表明,改进后的算法能减少任务平均完成时间、并能在云计算环境下有效提高调度效率。

关 键 词:云计算  任务调度  蚁群算法  

Research on Task Scheduling Algorithm In Cloud Computing Environment
LI Hanyi,CHEN Jiaqi. Research on Task Scheduling Algorithm In Cloud Computing Environment[J]. Electronic Science and Technology, 2015, 28(11): 43
Authors:LI Hanyi  CHEN Jiaqi
Affiliation:(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
Abstract:There are large number of tasks in cloud computing environment,and how to conduct effective task scheduling is the key to allocate resources by need in cloud computing environment in order to be more efficient completion of task request.This paper proposes a task scheduling algorithm based on the ant colony optimization which an adapt to the dynamic characteristics of the cloud computing environment coupled with the advantages of ant colony optimization in the treatment of NP-Hard.The algorithm is designed to minimize task completion time during scheduling.Simulation on the CloudSim platform shows that this algorithm can effectively improve the task scheduling time under cloud computing environment.
Keywords:cloud computing  job scheduling  ant colony optimization,
本文献已被 万方数据 等数据库收录!
点击此处可从《电子科技》浏览原始摘要信息
点击此处可从《电子科技》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号