首页 | 本学科首页   官方微博 | 高级检索  
     

基于注意力机制的深度学习路面裂缝检测
引用本文:曹锦纲,杨国田,杨锡运. 基于注意力机制的深度学习路面裂缝检测[J]. 计算机辅助设计与图形学学报, 2020, 32(8): 1324-1333
作者姓名:曹锦纲  杨国田  杨锡运
作者单位:华北电力大学控制与计算机工程学院 保定 071003;华北电力大学控制与计算机工程学院 北京 102206
基金项目:中央高校基本科研业务费专项
摘    要:为实现自动准确地检测路面裂缝,提升路面裂缝检测效果,提出了一种基于注意力机制的裂缝检测网络(attention-based crack networks,ACNet).该网络采用编码器-解码器网络构架,编码器采用ResNet34为骨干网,提取路面裂缝特征;在编码器和解码器间加入基于注意力机制的特征模块(attention-based feature module,AFM),以利用全局信息和增加对检测不同尺度裂缝的鲁棒性,更好地提取裂缝特征和定位裂缝位置;在解码阶段也引入注意力机制,设计了基于注意力机制的解码模块(attention-based decoder module,ADM),实现对裂缝的准确定位.在公共裂缝数据集CFD和CRACK500上,与U-Net等其他8种方法进行了比较,结果表明,ACNet裂缝检测效果更理想,在主观视觉上,裂缝定位更准确,细节更丰富;在实验指标F1和重合率上,检测结果都有明显提升,说明了该网络的有效性.

关 键 词:注意力机制  深度神经网络  路面裂缝检测

Pavement Crack Detection with Deep Learning Based on Attention Mechanism
Cao Jingang,Yang Guotian,Yang Xiyun. Pavement Crack Detection with Deep Learning Based on Attention Mechanism[J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(8): 1324-1333
Authors:Cao Jingang  Yang Guotian  Yang Xiyun
Affiliation:(School of Control and Computer Engineering,North China Electric Power University,Baoding 071003;School of Control and Computer Engineering,North China Electric Power University,Beijing 102206)
Abstract:To detect pavement crack automatically and accurately and improve detection effect,an attention-based crack network(ACNet)was proposed.ACNet adopts the encoder-decoder structure,and the encoder uses ResNet34 as the backbone network to extract pavement crack features.An attention-based feature module(AFM)is added between the encoder and the decoder,which utilizes the global information and increases the robustness of detecting different scales cracks,and it contributes to extract crack features and locate crack positions.The attention mechanism is also introduced in the decoding stage,and an attention-based decoder module(ADM)is designed to improve accuracy of detecting crack.Extensive experiments on two public crack datasets CFD and CRACK500 show that ACNet has better detection performances than other 8 methods,on the subjective vision,the crack location is more accurate and the details are more abundant;the experimental indicators F1 score and overlapping rate are significantly improved,which demonstrates the effectiveness of the proposed method.
Keywords:attention mechanism  deep neural networks  pavement crack detection
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号