首页 | 本学科首页   官方微博 | 高级检索  
     

基于能耗优化的深海电动机械臂轨迹规划
引用本文:白云飞,张奇峰,范云龙,翟新宝,田启岩,唐元贵,张艾群. 基于能耗优化的深海电动机械臂轨迹规划[J]. 机器人, 2020, 42(3): 301-308. DOI: 10.13973/j.cnki.robot.190197
作者姓名:白云飞  张奇峰  范云龙  翟新宝  田启岩  唐元贵  张艾群
作者单位:1. 中国科学院沈阳自动化研究所机器人学国家重点实验室, 辽宁 沈阳 110016;2. 中国科学院机器人与智能制造创新研究院, 辽宁 沈阳 110169;3. 中国科学院大学, 北京 100049
摘    要:由于深海电动机械臂动力学模型较为复杂,难以基于动力学模型构建精确的能耗优化目标函数,因此,本文提出一种利用径向基函数(RBF)神经网络构建机械臂功耗模型的方法.首先,利用机械臂水下运动实验数据集训练所构建的RBF神经网络.利用基于该神经网络的功耗模型,结合机械臂关节空间轨迹规划多项式,建立机械臂能耗目标函数.然后,采用自适应粒子群优化(PSO)算法求解最优轨迹参数.结果显示,RBF功耗网络均方根误差(RMSE)为20.89 W;经过优化的轨迹的能耗比实验轨迹的能耗均值降低410.8 J(18.3%).实验结果表明基于自适应PSO算法的轨迹规划方法实现了能耗优化的目标.

关 键 词:深海电动机械臂  能耗优化  轨迹规划  径向基神经网络  自适应粒子群优化
收稿时间:2019-04-22

Trajectory Planning of Deep-sea Electric Manipulator Based on Energy Optimization
BAI Yunfei,ZHANG Qifeng,FAN Yunlong,ZHAI Xinbao,TIAN Qiyan,TANG Yuangui,ZHANG Aiqun. Trajectory Planning of Deep-sea Electric Manipulator Based on Energy Optimization[J]. Robot, 2020, 42(3): 301-308. DOI: 10.13973/j.cnki.robot.190197
Authors:BAI Yunfei  ZHANG Qifeng  FAN Yunlong  ZHAI Xinbao  TIAN Qiyan  TANG Yuangui  ZHANG Aiqun
Affiliation:1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;2. Institutes for Robotics and Intelligent Manufacting, Chinese Academy of Sciences, Shenyang 110169, China;3. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:The dynamic model of the deep-sea electric manipulator is complex, so it is difficult to construct an accurate objective function of energy optimization based on dynamic model. Therefore, a method to establish power model of the manipulator is proposed, using radial basis function (RBF) neural network. Firstly, the RBF neural network is trained by using the experimental data set of underwater motion of the manipulator. By utilizing the power model based on the RBF neural network, the energy objective function of the manipulator is established combined with the trajectory planning polynomial of the manipulator joint space. Then, the adaptive particle swarm optimization (PSO) algorithm is used to solve the optimal trajectory parameters. The results show that the root mean square error (RMSE) of RBF power network is 20.89 W, and the energy consumption based on the optimized trajectory is 410.8 J (18.3%) lower than the average energy consumption based on the the experimental trajectory. The experimental results show that the trajectory planning method based on the adaptive PSO algorithm achieves the goal of energy optimization.
Keywords:deep-sea electric manipulator  energy optimization  trajectory planning  radial basis neural network  adaptive particle swarm optimization(PSO)  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《机器人》浏览原始摘要信息
点击此处可从《机器人》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号