首页 | 本学科首页   官方微博 | 高级检索  
     


Incorporation of dietarycis andtrans octadecenoate isomers in the lipid classes of various rat tissues
Authors:Randall Wood
Affiliation:(1) Department of Biochemistry and Biophysics, Texas Agricultural Experiment Station, Texas A&M University System, 77843 College Station, Texas
Abstract:The percentage distribution of the geometrical and positional isomers in the hexadecenoates and octadecenoates isolated from triglycerides, phosphatidylcholines, and phosphatidylethanolamines of brain, heart, kidney, liver, lung, muscle, spleen, and adipose tissues from rats maintained four weeks on a semipurified diet supplemented with 15% partially hydrogenated safflower fatty acids, has been determined. Except for brain, octadecenoate percentages were increased in each of the lipid classes of all the tissues by the dietary fat. Although the diet did not contain detectable hexadecenoates, the 16∶1 fraction from the lipid classes of all the tissues was composed of 10–70% of thetrans isomers, indicating chain shortening of the dietary octadecenotes. Distribution ofcis andtrans positional isomers in triglyceride hexadecenoates was approximately the same in all tissues. Relatively high percentages of the Δ9, Δ10, and Δ11 isomers were observed, but the Δ8 was the predominatingtrans hexadecenoate isomer, indicating preferential chain shortening of thetrans δ10 octadecenoate.Trans octadecenoates were found in all tissues, but concentrations were dependent on tissue and lipid class. The distribution of thecis andtrans octadecenoate isomers was similar in all the tissue triglycerides, with the distribution of thetrans isomers resembling the diet. In contrast, the percentage distribution of thetrans octadecenoates in the phospholipid classes differed dramatically from the diet, and the distribution was dependent on both the tissue and lipid class. The Δ12, Δ13, and Δ14trans octadiet, suggesting an accumulation of these isomers. Although thecis Δ10 octadecenoate was a significant dietary component, this isomer was not incorporated significantly into any lipid class of any tissue. The metabolic fate of this isomer remains unknown.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号