首页 | 本学科首页   官方微博 | 高级检索  
     


Resistance of Fusarium sp spores to solar TiO2 photocatalysis: influence of spore type and water (scaling‐up results)
Authors:M I Polo‐López  P Fernández‐Ibáñez  I García‐Fernández  I Oller  I Salgado‐Tránsito  C Sichel
Affiliation:1. Plataforma Solar de Almería—CIEMAT, P.O. Box 22, 07200 Tabernas, Almería, Spain;2. Centro de Investigación en Energía;3. Universidad Nacional Autónoma de México, CP 62580 Temixco, Morelos, México;4. Siemens Water Technologies‐Wallace and Tiernan GmbH, Auf der Weide 10, Günzburg, Germany
Abstract:BACKGROUND: Common irrigation water disinfection methods, which may be unable to inactivate all types of pathogens or even become phytotoxic themselves, are not very effective in controlling phytopathogens. Water disinfection by photocatalysis is a promising irrigation‐water treatment for destroying phytopathogens without the drawbacks of conventional disinfection methods. Previous research has shown that solar photocatalytic technology can be used in the disinfection treatment of bacteria, protozoa and fungi, either through solar disinfection only. The purpose of this work was evaluate the TiO2 photocatalysis process to inactivate Fusarium spores in distilled and well water. RESULTS: This paper reports on the ability of solar photocatalysis to inactivate Fusarium spores in a solar bottle reactor and in a new 60 L compound parabolic collector (CPC) prototype reactor. Inactivation of Fusarium sp spores by titanium dioxide (Degussa P25) was evaluated in distilled and natural well water. The experiments were carried out using 5 or 6 h exposure to natural sunlight at the Plataforma Solar de Almeria (Southeast Spain). The highest Fusarium spore inactivation rate during experiments was achieved with a 30 L min?1 flow rate and 100 mg L?1 TiO2 concentration. Three different Fusarium spores (microconidia, macroconidia and chlamydospores) were individually evaluated to determine whether there were differences in resistance to the photocatalytic treatment. The results showed that chlamydospores were the most resistant, followed by macroconidia, and finally microconidia were the most sensitive. CONCLUSIONS: Microconidia, macroconidia and chlamydospores in distilled and well water were inactivated with TiO2 slurry in a 60 L CPC photoreactor, demonstrating for the first time that it is possible to scale‐up photocatalytic treatment for use and reuse of water for irrigation. Copyright © 2010 Society of Chemical Industry
Keywords:Fusarium sp.  titanium dioxide  natural well water  compound parabolic collector (CPC)  solar reactor
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号