首页 | 本学科首页   官方微博 | 高级检索  
     


Proanthocyanidin metabolites associated with dietary fibre from in vitro colonic fermentation and proanthocyanidin metabolites in human plasma
Authors:Fulgencio Saura‐Calixto  Jara Pérez‐Jiménez  Sonia Touriño  José Serrano  Elisabet Fuguet  Josep Lluis Torres  Isabel Goñi
Affiliation:1. Department of Metabolism and Nutrition, ICTAN ‐ CSIC, Madrid, Spain;2. Institute for Advanced Chemistry of Catalonia, CSIC (ICAQ‐CSIC), Jordi Girona, Barcelona, Spain;3. Nutrition and Gastrointestinal Unit UCM‐CSIC, Department of Nutrition I, UCM, Madrid, Spain
Abstract:Proanthocyanidins (PAs) or condensed tannins, a major group of dietary polyphenols, are oligomers and polymers of flavan‐3‐ol and flavan‐3, 4‐diols widely distributed in plant foods. Most literature data on PAs' metabolic fate deal with PAs that can be extracted from the food matrix by aqueous‐organic solvents ( extractable proanthocyanidins). However, there are no data on colonic fermentation of non‐extractable proanthocyanidins (NEPAs), which arrive almost intact to the colon, mostly associated to dietary fibre (DF). The aim of the present work was to examine colonic fermentation of NEPAs associated with DF, using a model of in vitro small intestine digestion and colonic fermentation. Two NEPA‐rich materials obtained from carob pod (Ceratonia siliqua L. proanthocyanidin) and red grapes (grape antioxidant dietary fibre) were used as test samples. The colonic fermentation of these two products released hydroxyphenylacetic acid, hydroxyphenylvaleric acid and two isomers of hydroxyphenylpropionic acid, detected by HPLC‐ESI‐MS/MS. Differences between the two products indicate that DF may enhance the yield of metabolites. In addition, the main NEPA metabolite in human plasma was 3,4‐dihydroxyphenyl acetic acid. The presence in human plasma of the same metabolites as were detected after in vitro colonic fermentation of NEPAs suggests that dietary NEPAs would undergo colonic fermentation releasing absorbable metabolites with potential healthy effects.
Keywords:Colonic fermentation  Dietary fibre  Human plasma  Metabolites  Proanthocyanidins
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号