首页 | 本学科首页   官方微博 | 高级检索  
     


Study of inlet temperature effect on single and double inlets cyclone performance
Authors:Moein Siadaty  Saeid Kheradmand  Fatemeh Ghadiri
Affiliation:Department of Mechanical and Aerospace Engineering, Malek-Ashtar University of Technology, Shahin-Shahr, Isfahan, Islamic Republic of Iran
Abstract:In this paper, a comprehensive study is performed in order to demonstrate the effect of the flow and particle temperature on cyclone performance. Three main characteristics of the low-mass-loading gas-solid cyclone separators, including: pressure drop, particle separation efficiency and natural vortex length are investigated. Eulerian-Lagrangian approach is employed to solve the unsteady Navier-Stokes and energy equations to model the flow of particles. Because of the strong swirling flow in cyclone, Reynolds stress transport model (RSTM) is used to calculate the Reynolds stresses. Numerical simulation is accomplished at a temperature range of 293–700 K and four inlet velocities. Also, a comparison is conducted between two Stairmand high efficiency cyclones with the same dimensions, one with single inlet and the other with double inlets to declare the effect of the second inlet on cyclone performance. The analysis of results shows that the swirling flow becomes weaker for higher temperature cases and thus, flow pressure drop and particle separation efficiency is noticeably decreased. Increasing in temperature causes decrease in natural vortex length. Also, study of natural vortex length is performed for the studied range of temperature.
Keywords:Temperature  Cyclone  Pressure drop  Particle separation efficiency  Natural vortex length
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号