首页 | 本学科首页   官方微博 | 高级检索  
     

基于精英进化导向的多目标PID参数优化
引用本文:武星,楼佩煌,唐敦兵. 基于精英进化导向的多目标PID参数优化[J]. 控制理论与应用, 2010, 27(9): 1235-1239
作者姓名:武星  楼佩煌  唐敦兵
作者单位:南京航空航天大学,机电学院,江苏,南京,210016;南京航空航天大学,机电学院,江苏,南京,210016;南京航空航天大学,机电学院,江苏,南京,210016
基金项目:南京航空航天大学基本科研业务费专项科研基金资助项目(NJ2010025); 南京航空航天大学引进人才科研启动基金资助项目(S1026-053); 霍英东教育基金资助项目(111056).
摘    要:在多目标优化问题中,决策者必须对Pareto前沿的众多非劣解做出选择.本文将决策偏好融入Pareto优化过程,提出一种基于精英导向机制的多目标遗传算法,根据决策偏好选择Pareto最优解为精英,利用无损有限精度法和归一增量距离保持种群多样性,通过多种群进化机制将决策偏好的影响传播到整个种群.该方法成功应用于自动导引车(AGV)伺服系统的PID参数优化,可根据决策偏好快速有效地定向搜索Pareto最优解,保证伺服控制达到路径跟踪要求的速度响应性能.

关 键 词:PID参数整定  多目标优化  遗传算法  精英导向  Pareto最优解
收稿时间:2009-05-19
修稿时间:2009-12-29

Multi-objective optimization for PID parameter based on elitist-evolution guidance
WU Xing,LOU Pei-huang and TANG Dun-bing. Multi-objective optimization for PID parameter based on elitist-evolution guidance[J]. Control Theory & Applications, 2010, 27(9): 1235-1239
Authors:WU Xing  LOU Pei-huang  TANG Dun-bing
Affiliation:College of Mechanical and Electric Engineering,Nanjing University of Aeronautics and Astronautics,College of Mechanical and Electric Engineering,Nanjing University of Aeronautics and Astronautics,College of Mechanical and Electric Engineering,Nanjing University of Aeronautics and Astronautics
Abstract:For multi-objective optimization problems, a decision-maker must choose one solution from many nondominated ones in Pareto front. Decision preferences are introduced into Pareto optimization in this paper, and a multiobjective genetic algorithm based on elitist-guidance mechanism is presented. Elitists are selected from Pareto optimal solutions according to decision-making preferences. The lossless-finite-precision method and the normalized incrementdistance are proposed to keep the population diversity. The effect of decision-making preferences is spread among the entire population by using the multi-population evolution mechanism. This approach is applied successfully to PID parameter optimization of automated-guided-vehicle(AGV) servo system, which can make a fast, effective and directional search for Pareto optimal solutions according to decision-making preferences, and ensures the servo control for achieving the velocity-response performance required by path tracking.
Keywords:PID parameter tuning   multi-objective optimization   genetic algorithm   elitist-guidance   Pareto optimal solutions
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《控制理论与应用》浏览原始摘要信息
点击此处可从《控制理论与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号