首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波系数变换的小波阈值去噪算法改进
引用本文:王宏强,尚春阳,高瑞鹏,李子楠. 基于小波系数变换的小波阈值去噪算法改进[J]. 振动与冲击, 2011, 30(10): 165-168. DOI:  
作者姓名:王宏强  尚春阳  高瑞鹏  李子楠
作者单位:西安交通大学 机械工程学院 陕西 西安 710049
摘    要:小波阈值去噪是近年兴起的一种较好的去噪算法,其一关键点在于准确的选取阈值将细节信号和噪声信号区分开来。提出了一种算法对小波系数进行变换,将难以区分信号和噪声的区域放大,以利于阈值的选取,从而达到改进小波阈值去噪的目的。通过使用传统阈值去噪算法和该改进算法进行仿真,结果表明改进算法对去噪指标SNR、SME(平均方差)都有所改善。另外本文实验也表明改进算法可以更好的去除噪声,且较好的重现原信号的细节特征。

关 键 词:信息处理技术   小波去噪   小波分解   小波系数变换 

An improvement of wavelet shrinkage denoising via wavelet coefficient transformation
WANG Hong-qiang,SHANG Chun-yang,GAO Rui-peng,LI Zi-nan. An improvement of wavelet shrinkage denoising via wavelet coefficient transformation[J]. Journal of Vibration and Shock, 2011, 30(10): 165-168. DOI:  
Authors:WANG Hong-qiang  SHANG Chun-yang  GAO Rui-peng  LI Zi-nan
Affiliation:An improvement of wavelet shrinkage denoising via wavelet coefficient transformation
Abstract:It is crucial to obtain an accurate threshold to distinguish the original signal from the noisy signal in wavelet shrinkage de-noising, an important de-noising algorithm. This paper proposes a new improvement method to the previous wavelet shrinkage schemes, that is, to transform the coefficients to enlarge the area where the original signal and the noise is close. The results of the simulation illustrate it brings improvement in the index of SNR, SME and visual effects. The experiments also demonstrate it could improve the effect of de-noising while reserve the details of the original signal.
Keywords:signal processingwavelet thresholdwavelet decompositionwavelet coefficient transformation
点击此处可从《振动与冲击》浏览原始摘要信息
点击此处可从《振动与冲击》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号