首页 | 本学科首页   官方微博 | 高级检索  
     


Three-dimensional behaviors of the hydrogen and steam in the APR1400 containment during a hypothetical loss of feed water accident
Authors:Jongtae Kim   Seong-Wan Hong   Sang-Baik Kim  Hee-Dong Kim
Affiliation:

aThermal Hydraulics Safety Research Center, Korea Atomic Energy Research Institute, 150 Dukjin-dong, Yuseong-gu, Daejeon 305-353, Republic of Korea

Abstract:During a hypothetical severe accident in a nuclear power plant (NPP), hydrogen is generated by an active reaction of the fuel-cladding and the steam in the reactor pressure vessel and released with the steam into the containment. In order to mitigate hydrogen hazards which could possibly occur in the NPP containment, a hydrogen mitigation system (HMS) is usually adopted. The design of the next generation NPP (APR1400) developed in Korea specifies that 26 passive autocatalytic recombiners and 10 igniters should be installed in the containment for a hydrogen mitigation. In this study, an analysis of the hydrogen and steam behavior during a total loss of feed water (LOFW) accident in the APR1400 containment has been conducted by using the computational fluid dynamics (CFD) code GASFLOW. During the accident, a huge amount of hot water, steam, and hydrogen is released into the in-containment refueling water storage tank (IRWST). The current design of the APR1400 includes flap-type openings at the IRWST vents which operate depending on the pressure difference between the inside and outside of the IRWST. It was found from this study that the flaps strongly affect the flow structure of the steam and hydrogen in the containment. The possibilities of a flame acceleration and a transition from deflagration to detonation (DDT) were evaluated by using the Sigma–Lambda criteria. Numerical results indicate that the DDT possibility was heavily reduced in the IRWST compartment by the effects of the flaps during the LOFW accident.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号