首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
结合矩阵分解的混合型社会化推荐算法
作者姓名:
杨丰瑞
作者单位:
重庆邮电大学
摘 要:
推荐系统是用来解决当今时代信息过载的重要工具。随着在线社交网络的出现和普及,一些基于网络推荐算法研究的出现,已经引起研究者的广泛关注。信任是社会网络中的重要信息之一,通常用来改进基于社交网络的推荐系统,然而,大多数信任感知的推荐系统忽略了用户有不同行为偏好在不同的兴趣域;本文不仅考虑了用户间特定域信任网络,并且结合推荐项目之间特征属性信息,提出了一种新型社会化推荐算法(H-PMF)。实验表明,H-PMF算法在评分误差和推荐精度上都取得了更好的效果。
关 键 词:
信任网络
协同过滤
矩阵分解
推荐系统
收稿时间:
2017-01-15
修稿时间:
2018-04-29
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号