首页 | 本学科首页   官方微博 | 高级检索  
     

结合矩阵分解的混合型社会化推荐算法
引用本文:杨丰瑞. 结合矩阵分解的混合型社会化推荐算法[J]. 计算机应用研究, 2018, 35(6)
作者姓名:杨丰瑞
作者单位:重庆邮电大学
摘    要:推荐系统是用来解决当今时代信息过载的重要工具。随着在线社交网络的出现和普及,一些基于网络推荐算法研究的出现,已经引起研究者的广泛关注。信任是社会网络中的重要信息之一,通常用来改进基于社交网络的推荐系统,然而,大多数信任感知的推荐系统忽略了用户有不同行为偏好在不同的兴趣域;本文不仅考虑了用户间特定域信任网络,并且结合推荐项目之间特征属性信息,提出了一种新型社会化推荐算法(H-PMF)。实验表明,H-PMF算法在评分误差和推荐精度上都取得了更好的效果。

关 键 词:信任网络;协同过滤;矩阵分解;推荐系统
收稿时间:2017-01-15
修稿时间:2018-04-29

A Hybrid Socialized Recommendation Algorithm Based on Matrix Factorization
Yang Fengrui. A Hybrid Socialized Recommendation Algorithm Based on Matrix Factorization[J]. Application Research of Computers, 2018, 35(6)
Authors:Yang Fengrui
Affiliation:Chongqing University of Posts and Telecommunications
Abstract:Recommender systems (RSs) have become important tools for solving the problem of information overload. With the emergence and popularity of online social networks, some studies on network-based recommendation algorithm have emerged, raising the concern of many researchers. Trust is one kind of important information available in social networks and is often used for performance improvement in social-network-based RSs. However, most trust-aware RSs ignore the fact that the user has different preference in different domains of interest. In this paper, we propose a new social recommendation algorithm (H-PMF), which not only considers the user-specific domain trust network, but also combines the feature attribute information between recommended items. Experiments show that the H-PMF algorithm has better performance in both scoring error and recommendation accuracy.
Keywords:Trust networks   collaborative filtering   matrix factorization   recommender system
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号