首页 | 本学科首页   官方微博 | 高级检索  
     

基于DS聚类的高光谱图像集成分类算法
引用本文:刘万军,李天慧. 基于DS聚类的高光谱图像集成分类算法[J]. 计算机应用研究, 2018, 35(10)
作者姓名:刘万军  李天慧
作者单位:辽宁工程技术大学软件学院,辽宁工程技术大学软件学院
基金项目:国家自然科学基金(61172144);国家自然科学基金(61401185);
摘    要:针对高光谱遥感图像维数高、样本少导致分类精度低的问题,提出一种基于DS聚类的高光谱图像集成分类算法(DSCEA)。首先,根据高光谱数据特点,从整体波段中随机选择一定数量的波段,构成不同的训练样本;其次,分析图像的空谱信息,构造无向加权图,利用优势集(DS)聚类方法得到最大特征差异的波段子集;最后,根据不同样本,利用支持向量机训练具有差异的单个分类器,采用多数表决法集成最终分类器,实现对高光谱遥感图像的分类。在Indian Pines数据集上DSCEA算法的分类精度最高可达到84.61%,在Pavia University数据集上最高可达到91.89%,实验结果表明DSCEA算法可以有效的解决高光谱分类问题。

关 键 词:优势集   聚类  集成  支持向量机  高光谱图像分类
收稿时间:2017-05-25
修稿时间:2018-08-31

Hyperspectral image Ensemble classification algorithmBased on Dominant Set Clustering
Liu Wanjun and Li Tianhui. Hyperspectral image Ensemble classification algorithmBased on Dominant Set Clustering[J]. Application Research of Computers, 2018, 35(10)
Authors:Liu Wanjun and Li Tianhui
Affiliation:College of Software,Liaoning Technical University,Huludao,
Abstract:To solve the low classification accuracy problem of hyperspectral image classification due to the high dimensionality and the low sample size, this paper developed a hyperspectral image classification ensemble algorithm based on DS clustering. Firstly, according to the characteristic of hyperspectral data, it selected a certain number of bands from the whole bands randomly, to constitute different training samples. Secondly, it constructed a weighted undirected graph by studying the spectral and spatial information of hyperspectral image, and obtained the maximum characteristic difference of band set by utilizing DS clustering approach. Finally, according to the different samples, it trained a single classifier with different differences by SVM, obtained the ensemble classifier by the majority voting method, to realize the classification problem of hyperspectral image. The experimental results show that classification accuracy of DECEA can reach 84.61% on the Indian Pines dataset, and the classification accuracy of DECEA can reach 91.89% on the Pavia University dataset, it validated the DECEA algorithm could solve the hyperspectral image classification problem.
Keywords:Dominant set   Clustering   Ensemble   Support vector machine(SVM)   Hyperspectral image classification
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号