首页 | 本学科首页   官方微博 | 高级检索  
     

多目标细菌觅食优化算法*
引用本文:李 珺,党建武,王 垚,屈艺晖. 多目标细菌觅食优化算法*[J]. 计算机应用研究, 2018, 35(7)
作者姓名:李 珺  党建武  王 垚  屈艺晖
作者单位:兰州交通大学 电子与信息工程学院,兰州交通大学 电子与信息工程学院,兰州交通大学 电子与信息工程学院,兰州交通大学 电子与信息工程学院
基金项目:省自然科学基金资助项目(1506RJZA084);甘肃省教育厅科研项目(1204-13);甘肃省教育科学‘十二五’规划课题(GS[2015]GHB0907);兰州市科技计划项目(2015-2-74)
摘    要:传统的细菌觅食优化算法仅针对单目标优化问题寻优。为进一步发掘细菌群体智能在多目标优化问题中的寻优优势,提出了改进的多目标细菌觅食优化算法。在个体间互不支配时给出归一化的择优策略;引入差分思想完成复制操作,提高种群的多样性;采用栅格划分法进行迁徙操作,提高解集的分散性。同时使用外部集存放当前找到的非支配解,并不断对外部集进行优化。通过对多个标准函数进行测试并与其他几种算法的对比结果表明,所提出的多目标细菌觅食优化算法在解的收敛性和分散性指标上都有一定提升,能够有效解决多目标优化问题。

关 键 词:多目标优化  细菌觅食优化算法  归一化  差分  外部集  栅格
收稿时间:2017-02-14
修稿时间:2018-05-30

Multi-Objective Bacteria Foraging Optimization Algorithm
LI Jun,DANG Jianwu,Wang Yao and Qu Yihui. Multi-Objective Bacteria Foraging Optimization Algorithm[J]. Application Research of Computers, 2018, 35(7)
Authors:LI Jun  DANG Jianwu  Wang Yao  Qu Yihui
Affiliation:School of Electron and Information Engineering, Lanzhou Jiaotong University,,,
Abstract:Conventional Bacterial Foraging Optimization Algorithm simply optimizes in the single target optimization problems. In order to exploit the further strengths of bacterial colony in multiple target optimization, the improved multiple target bacterial foraging algorithm is raised in this article. The optimization strategy will be put forward via normalization method when individuals have no inter-dominance. The population diversity will be increased at maximum with the introduction of difference in the completion of replication. The solution set dispersiblity could be enhanced with the assistance of grid portioning method in the targeted migration operation. Simultaneously, the found non-dominant solution at present could be put in the external data set and continuous optimization is available for the non-dominant solution set in the external data set applying the given update strategy in external data set. The outcome of comparison between several other algorithm and the test of numerous standard function manifest that the proposed multiple target bacterial foraging algorithm raises both astringency and dispersiblity of solution which can address multiple target optimization problem.
Keywords:Multi- objective Optimization Problems(MOPs)  Bacterial Foraging Optimization Algorithm(BFO)   normalization   Differential Evolution(DE)   external data set   grid
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号