首页 | 本学科首页   官方微博 | 高级检索  
     


Carrier lifetime limitation defects in polycrystalline silicon ribbons grown on substrate (RGS)
Affiliation:1. Materials Science and Engineering Department, North Carolina State University, Raleigh, NC 27695, USA;2. Energy Research Center of the Netherlands, ECN, PO Box 1, NL-1755 ZG Petten, Netherlands
Abstract:Carrier lifetime limitation defects in polycrystalline silicon ribbons have been examined in samples with high oxygen and carbon content. Infrared spectroscopy showed that essentially all supersaturated oxygen impurities precipitated within 1 h annealing at over 800 °C. Preferential defect etching revealed that a much higher density of oxygen precipitates were generated in dislocation-free grains than in those highly dislocated (105–107 cm−2) ones. Correlated with electron-beam-induced current imaging, we found that oxygen precipitates are the dominant carrier recombination defects in dislocation-free grains, while dislocations are the lifetime killer for highly dislocated grains. It is suggested that eliminating dislocations alone will not improve the carrier lifetime, considering that a higher density of oxygen precipitates formed in the absence of dislocation-related heterogeneous nucleation sites will significantly degrade the carrier lifetime.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号