首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应动态邻域结构的人工鱼群算法
引用本文:龚 波,曾飞艳. 基于自适应动态邻域结构的人工鱼群算法[J]. 计算机工程与应用, 2015, 51(13): 52-55
作者姓名:龚 波  曾飞艳
作者单位:湖南科技大学 计算机科学与工程学院,湖南 湘潭 411100
摘    要:针对人工鱼群算法易陷入局部最优且寻优精度不高的问题,提出了一种基于自适应动态邻域结构的人工鱼群算法。算法中,每条人工鱼先根据鱼群中其他人工鱼与自身的距离及当前迭代次数自适应调整动态邻域结构,再根据该动态邻域结构自适应计算视野和步长;还结合粒子群算法信息策略和公告板对人工鱼的行为进行了改进。仿真实验结果表明,该算法克服局部极值实现全局寻优的能力更强,优化精度更高。

关 键 词:人工鱼群算法  自适应  动态邻域  粒子群算法  

Artificial fish swarm algorithm based on adaptive dynamic neighborhood structure
GONG Bo,ZENG Feiyan. Artificial fish swarm algorithm based on adaptive dynamic neighborhood structure[J]. Computer Engineering and Applications, 2015, 51(13): 52-55
Authors:GONG Bo  ZENG Feiyan
Affiliation:College of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411100, China
Abstract:Aiming at the problems of easily falling into local optimum and low optimization precision in the Artificial Fish Swarm Algorithm(AFSA), an Artificial Fish Swarm Algorithm based on Adaptive Dynamic Neighborhood Structure(ADAFSA) is proposed. In the algorithm, the dynamic neighbors of each artificial fish are adaptively constructed according to the distance between the fish with the others and the current iteration, then the visual and the step of each artificial can be adaptively calculated with the dynamic neighborhood. The algorithm also adds information strategy of Particle Swarm Optimization(PSO) and billboard to improve behaviors of artificial fish. The simulation results show that the ability of the proposed algorithm overcomes the local optimum to achieve stronger global optimization, and optimization precision is higher.
Keywords:Artificial Fish Swarm Algorithm(AFSA)  adaptively  dynamic neighborhood  Particle Swarm Optimization(PSO)  
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号