首页 | 本学科首页   官方微博 | 高级检索  
     

基于正交独立成分分析的过程数据建模
引用本文:罗明英,侍洪波,谭帅. 基于正交独立成分分析的过程数据建模[J]. 信息与控制, 2016, 45(5): 551-555. DOI: 10.13976/j.cnki.xk.2016.0551
作者姓名:罗明英  侍洪波  谭帅
作者单位:华东理工大学化工过程先进控制和优化技术教育部重点实验室, 上海 200237
基金项目:国家自然科学基金资助项目(61374140)
摘    要:针对非高斯数据分布过程中回归预测精度不足的问题,提出一种在独立成分分析(ICA)的基础上与正交信号校正(OSC)相结合的多元线性回归(MLR)方法——正交独立成分回归(O-ICR).首先将原输入数据通过正交ICA(O-ICA)进行预处理,去除ICA在提取高阶统计量时带来的与Y无关的干扰变化,然后对校正后的X提取独立成分,代替原输入数据建立与Y之间的回归预测模型.与传统的ICR相比,该方法提取的独立成分经过校正可使回归模型的预测精度更高.最后通过Tennessee Eastman(TE)过程的质量预测仿真,验证了该建模方法的有效性.

关 键 词:质量预测  非高斯过程  正交信号校正  独立成分分析  
收稿时间:2015-09-22

Process Data Modeling Based on Orthogonal Independent Component Analysis
LUO Mingying,SHI Hongbo,TAN Shuai. Process Data Modeling Based on Orthogonal Independent Component Analysis[J]. Information and Control, 2016, 45(5): 551-555. DOI: 10.13976/j.cnki.xk.2016.0551
Authors:LUO Mingying  SHI Hongbo  TAN Shuai
Affiliation:Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
Abstract:Based on independent component analysis(ICA), a multivariate linear regression(MLR) method combined with orthogonal signal correction(OSC), which is called orthogonal independent component regression(O-ICR), is proposed for regression prediction of non-Gaussian processes. First, the O-ICA is conducted on an original input data matrix for removing disturbing variation that is not correlated to Y from the extracted high-order statistics in ICA. Then, independent components are extracted X from after correction. The regression prediction model is derived using these components instead of the original input data and Y. Compared with the traditional ICR, the proposed method has a more superior performance because independent components are corrected. Finally, the validity of the method is verified though quality prediction simulation in the Tennessee Eastman(TE) process.
Keywords:quality prediction  non-Gaussian process  orthogonal signal correction  independent component analysis  
点击此处可从《信息与控制》浏览原始摘要信息
点击此处可从《信息与控制》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号