首页 | 本学科首页   官方微博 | 高级检索  
     

滑动窗口中数据流最大频繁项集挖掘算法研究
引用本文:尹绍宏,单坤玉,范桂丹. 滑动窗口中数据流最大频繁项集挖掘算法研究[J]. 计算机工程与应用, 2015, 51(22): 145-149
作者姓名:尹绍宏  单坤玉  范桂丹
作者单位:天津工业大学 计算机科学与软件学院,天津 300387
摘    要:数据流最大频繁项集的项集数目相对很少并且已隐含所有的频繁项集,所以数据流中最大频繁项集的挖掘具有很好的时空效率并且有很大的意义,也受到了业界更多的关注。针对数据流最大频繁项集的挖掘,提出了在滑动窗口中基于矩阵的数据流最大频繁项集挖掘方法SWM-MFI,主要采用两个矩阵来存储数据信息:一个矩阵是事务矩阵,存储事务数据;一个矩阵是二项集矩阵,存放频繁2-项集。通过二项集矩阵扩展得到频繁k-项集,基于SWM-MFI算法挖掘出最大频繁项集。经过理论和实验证明该算法具有很好的时效性。

关 键 词:数据流  滑动窗口  最大频繁项集  矩阵  

Mining algorithm research of data stream maximum frequent itemsets in sliding window
YIN Shaohong,SHAN Kunyu,FAN Guidan. Mining algorithm research of data stream maximum frequent itemsets in sliding window[J]. Computer Engineering and Applications, 2015, 51(22): 145-149
Authors:YIN Shaohong  SHAN Kunyu  FAN Guidan
Affiliation:School of Computer Science and Software Engineering, Tianjin University of Technology, Tianjin 300387, China
Abstract:The number of itemsets in data stream maximum frequent itemsets is relatively few and has implied all frequent itemsets, so mining data stream maximum frequent itemsets has better efficiency in time and space and has great significance. It has gotten more attention by the industry. In view of the data stream maximum frequent itemsets, this paper proposes a mining method called SWM-MFI based on matrix of data stream maximum frequent itemsets in sliding window. The method stores the data information using two Matrixes:one called transaction matrix stores the transaction data and the other one called 2-itemsets matrix stores frequent 2-itemsets. Frequent k-itemsets can be got through the 2-itemsets matrix and the maximum frequent itemsets can be mined based on the method of SWM-MFI. The theories and experiments show that the method is better on time efficiency.
Keywords:data stream  sliding window  maximum frequent itemsets  matrix  
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号