首页 | 本学科首页   官方微博 | 高级检索  
     

基于概率的两层最近邻自适应度量分类算法
引用本文:仝伯兵,王士同. 基于概率的两层最近邻自适应度量分类算法[J]. 计算机工程与应用, 2015, 51(21): 144-149
作者姓名:仝伯兵  王士同
作者单位:江南大学 数字媒体学院,江苏 无锡 214122
摘    要:针对有限样本下,KNN算法距离量的选择以及以前距离量学习研究中没有充分考虑样本分布的情况,提出了一种新的基于概率的两层最近邻自适应度量算法(PTLNN)。该算法分为两层,在低层使用欧氏距离来确定一个未标记的样本局部子空间;在高层,用AdaBoost在子空间进行信息提取。以最小化平均绝对误差为原则,定义一个基于概率的自适应距离度量进行最近邻分类。该算法结合KNN与AdaBoost算法的优势,在有限样本下充分考虑样本分布能降低分类错误率,并且在噪声数据下有很好的稳定性,能降低AdaBoost过度拟合现象发生。通过与其他算法对比实验表明,PTLNN算法取得更好的结果。

关 键 词:两层分类  距离学习  基于概率  AdaBoost  平均绝对误差  

Probability-based two-level nearest neighbor classification algorithm for adaptive distance
TONG Bobing,WANG Shitong. Probability-based two-level nearest neighbor classification algorithm for adaptive distance[J]. Computer Engineering and Applications, 2015, 51(21): 144-149
Authors:TONG Bobing  WANG Shitong
Affiliation:School of Digital Media, Jiangnan University, Wuxi, Jiangsu 214122, China
Abstract:For finite samples, KNN heavily depends on an appropriate distance while distance learning on previous studies doesn’t fully consider the distribution of the sample. In this paper, a new probability-based two-level nearest neighbor classification algorithm for adaptive metrics(PTLNN) is proposed. This proposed algorithm is divided into two levels, it uses Euclidean distance in the low-level to determine an unlabeled sample local subspace set; at the high-level, it uses AdaBoost to extract information from subspace. With principle of minimizing the mean absolute error, it defines a probability-based adaptive distance nearest neighbor classifier. The proposed algorithm PTLNN combines the advantages of KNN and AdaBoost algorithm, fully considers the sample distributions in finite sample to reduce error rate, and has good stability in noisy data to reduce AdaBoost’s overfitting phenomenon. In contrast to other algorithms, experimental results show PTLNN can achieve better results.
Keywords:two-level classification  metric learning  probability-based  AdaBoost  mean-absolute error  
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号