首页 | 本学科首页   官方微博 | 高级检索  
     


A smartphone-based multimodal indoor tracking system
Abstract:The great popularity of smartphones, together with the increasingly important aim of providing context-aware services, has spurred interest in developing indoor tracking systems. Accurate tracking and localization systems are seen as key services for most context-aware applications. Research projects making use of radio signals detected by radio interfaces and the data captured by sensors commonly integrated in most smartphones have already shown promising and better results than location solutions based on a single data source. In this paper, we present a multi-sensor tracking system built by incrementally integrating state-of-the-art models of the Wi-Fi interface and the accelerometer, gyroscope and magnetometer sensors of a smartphone. Our proposal consists of a simple calibration phase of the tracking system, which involves enabling simultaneous data gathering from all three sensors and the Wi-Fi interface. Taking the Wi-Fi signal model as baseline, four different configurations are evaluated by incrementally adding and integrating the models of the other three sensors. The experimental results reveal a mean error accuracy of 60 cm in the case when the tracking system makes use of all four data sources. Our results also include a spatial characterization of the accuracy and processing power requirements of the proposed solution. Our main findings demonstrate the feasibility of developing accurate localization indoor tracking systems using current smartphones without the need for additional hardware.
Keywords:Sensor fusion  Indoor localization  Smartphone tracking  IMU-based  RSSI-based  Magnetic field
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号