首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of optimum plastic depth on stresses and load-bearing capacity of autofrettaged cylinder
Authors:ZHU Ruilin  ZHU Guolin
Affiliation:1. Polytechnic College, Hunan Normal University, Changsha 410081, China
2. Basic Courses Department, Jiangxi Police College, Nanchang 330103, China
Abstract:Autofrettage is an effective measure to even distribution of stresses and raise load-bearing capacity for (ultra-)high pressure apparatus. Currently, the research on autofrettage has focused mostly on specific engineering problems, while general theoretical study is rarely done. To discover the general law contained in autofrettage theory, by the aid of the authors’ previous work and according to the third strength theory, theoretical problems about autofrettage are studied including residual stresses and their equivalent stress, total stresses and their equivalent stress, etc. Because of the equation of optimum depth of plastic zone which is presented in the authors’ previous work, the equations for the residual stresses and their equivalent stress as well as the total stress and their equivalent stress are simplified greatly. Thus the law of distribution of the residual stresses and their equivalent stress as well as the total stress and their equivalent stress and the varying tendency of these stresses are discovered. The relation among various parameters are revealed. The safe and optimum load-bearing conditions for cylinders are obtained. According to the results obtained by theoretical analysis, it is shown that if the two parameters, namely ratio of outside to inside radius, k, and depth of plastic zone, k j, meet the equation of optimum depth of plastic zone, when the pressure contained in an autofrettaged cylinder is lower than two times the initial yield pressure of the unautofrettaged cylinder, the equivalent residual stress and the equivalent total stress at the inside surface as well as the elastic-plastic juncture of a cylinder are lower than yield strength. When an autofrettaged cylinder is subjected to just two times the initial yield pressure of the unautofrettaged cylinder, the equivalent total stress within the whole plastic zone is just identically equal to the yield strength, or it is a constant. The proposed research theoretically depicts the stress state of ultra-)high pressure autofrettaged cylinder more accurately and more reasonably and provides the reference for design of (ultra-)high pressure apparatus.
Keywords:thick-wall cylinder  autofrettage  residual stress  load-bearing capacity
本文献已被 CNKI 万方数据 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号