首页 | 本学科首页   官方微博 | 高级检索  
     

基于低秩矩阵恢复与协同表征的人脸识别算法
引用本文:何林知,赵建民,朱信忠,吴建斌,杨凡,郑忠龙. 基于低秩矩阵恢复与协同表征的人脸识别算法[J]. 计算机应用, 2015, 35(3): 779-782. DOI: 10.11772/j.issn.1001-9081.2015.03.779
作者姓名:何林知  赵建民  朱信忠  吴建斌  杨凡  郑忠龙
作者单位:浙江师范大学 数理与信息工程学院, 浙江 金华 321004
基金项目:国家自然科学基金资助项目(61272468,61170109);浙江省自然科学基金资助项目(LY14F030008,LY13F020015)
摘    要:针对人脸图像不完备的问题和人脸图像在不同视角、光照和噪声下所造成训练样本污损的问题,提出了一种快速的人脸识别算法--RPCA_CRC。首先,将人脸训练样本对应的矩阵D0分解为类间低秩矩阵D和稀疏误差矩阵E;其次,以低秩矩阵D为基础,得到测试样本的协同表征;最后,通过重构误差进行分类。相对于基于稀疏表征的分类(SRC)方法,所提算法运行速度平均提高25倍;且在训练样本数不完备的情况下,识别率平均提升30%。实验证明该算法快速有效,识别率高。

关 键 词:低秩  稀疏  人脸识别  协同表征  误差矩阵  
收稿时间:2014-10-11
修稿时间:2014-12-03

Face recognition algorithm based on low-rank matrix recovery and collaborative representation
HE Linzhi , ZHAO Jianmin , ZHU Xinzhong , WU Jianbin , YANG Fan , ZHENG Zhonglong. Face recognition algorithm based on low-rank matrix recovery and collaborative representation[J]. Journal of Computer Applications, 2015, 35(3): 779-782. DOI: 10.11772/j.issn.1001-9081.2015.03.779
Authors:HE Linzhi    ZHAO Jianmin    ZHU Xinzhong    WU Jianbin    YANG Fan    ZHENG Zhonglong
Affiliation:College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua Zhejiang 321004, China
Abstract:Since the face images might be not over-complete and they might be also corrupted under different viewpoints or different lighting conditions with noise, an efficient and effective method for Face Recognition (FR) was proposed, namely Robust Principal Component Analysis with Collaborative Representation based Classification (RPCA_CRC). Firstly, the face training dictionary D0 was decomposed into two matrices as the low-rank matrix D and the sparse error matrix E; Secondly, the test image could be collaboratively represented based on the low-rank matrix D; Finally, the test image was classified by the reconstruction error. Compared with SRC (Sparse Representation based Classification), the speed of RPCA_CRC on average is 25-times faster. Meanwhile, the recognition rate of RPCA_CRC increases by 30% with less training images. The experimental results show the proposed method is fast, effective and accurate.
Keywords:low-rank  sparse  face recognition  collaborative representation  error matrix
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号