首页 | 本学科首页   官方微博 | 高级检索  
     

基于高斯混合模型的空间域背景分离法及阴影消除法
引用本文:朱碧婷,郑世宝. 基于高斯混合模型的空间域背景分离法及阴影消除法[J]. 中国图象图形学报, 2008, 13(10)
作者姓名:朱碧婷  郑世宝
作者单位:上海交通大学电子工程系图像通信与信息处理研究所
摘    要:运动检测和背景分离技术是智能视频监控系统中的一项关键技术。由于目前广泛使用的高斯混合模型背景分离法是在像素域的时间尺度上对像素进行分类,因此常常造成误判,且无法解决阴影问题。为解决此问题,提出了一种空间域上的背景分离法。该方法首先将像素检测从像素域拓展至空间域的局部窗口内;然后在得到前景点集后,再将此空间域检测思想结合像素亮度特征运用到阴影消除中;最后,对经典模型的部分参数估计方法进行了修改。相关的实验结果证明,该方法可用于提高背景分离的检测精度和实现运动物体阴影消除。

关 键 词:背景分离  高斯混合模型  空间域检测  阴影消除

Space-domain Background Subtraction and Shadow Elimination Based on Gaussian Mixture Model
ZHU Bi-ting,ZHENG Shi-bao. Space-domain Background Subtraction and Shadow Elimination Based on Gaussian Mixture Model[J]. Journal of Image and Graphics, 2008, 13(10)
Authors:ZHU Bi-ting  ZHENG Shi-bao
Abstract:Moving detection is a key technology in robust video surveillance. Currently widely used Gaussian mixture model(GMM) always detects incorrectly and cannot deal with shadows based on the pixel-level and time-domain classification,so we introduce an effective algorithm extending the pixel-level detection to space-domain detection with the combination of illumination of the pixel using GMM and apply it for shadow removal after the first step when foreground pixels has been got. Besides,some parameters in the standard GMM are modified. Experiments show that our algorithm is effective both on detect accuracy and shadow removal.
Keywords:background subtraction  Gaussian mixture model  space-domain detection   shadow elimination
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号