首页 | 本学科首页   官方微博 | 高级检索  
     

基于滑模自抗扰的智能车路径跟踪控制
引用本文:吴艳,王丽芳,李芳.基于滑模自抗扰的智能车路径跟踪控制[J].控制与决策,2019,34(10):2150-2156.
作者姓名:吴艳  王丽芳  李芳
作者单位:中国科学院电力电子与电气驱动重点实验室,北京100190;中国科学院电工研究所,北京100190;中国科学院大学电子电气与通信工程学院,北京100049,中国科学院电力电子与电气驱动重点实验室,北京100190;中国科学院电工研究所,北京100190,中国科学院电力电子与电气驱动重点实验室,北京100190;中国科学院电工研究所,北京100190
基金项目:国家自然科学基金项目(2016YFB0101002);北京市科技计划项目(Z161100001416009).
摘    要:针对传统的基于精确数学模型的路径跟踪控制方法很难适应复杂多变驾驶环境的问题,提出一种基于终端滑模控制与自抗扰控制的路径跟踪控制方法.首先,通过构造一个期望偏航角函数能够满足当车辆的实际偏航角趋近于该期望偏航角时其侧向位移偏差趋近于零,从而简化路径跟踪控制;然后,采用扩张状态观测器实时估计系统的未建模动态,同时采用非奇异终端滑模来设计非线性误差反馈律,从而实现偏航角快速、准确地跟踪控制.仿真结果表明,所设计的控制器能够保证车辆稳定行驶的同时快速、精确地跟踪期望的路径.

关 键 词:智能车  路径跟踪控制  自抗扰控制  终端滑模控制  扩张状态观测器

Intelligent vehicle path following control based on sliding mode active disturbance rejection control
WU Yan,WANG Li-fang and LI Fang.Intelligent vehicle path following control based on sliding mode active disturbance rejection control[J].Control and Decision,2019,34(10):2150-2156.
Authors:WU Yan  WANG Li-fang and LI Fang
Affiliation:Key Laboratory of Power Electronics and Electric Drives,Chinese Academy of Sciences,Beijing100190,China;Institute of Electrical Engineering,Chinese Academy of Sciences,Beijing100190,China;School of Electronic Electrical and Communication Engineering,University of Chinese Academy of Sciences,Beijing100049,China,Key Laboratory of Power Electronics and Electric Drives,Chinese Academy of Sciences,Beijing100190,China;Institute of Electrical Engineering,Chinese Academy of Sciences,Beijing100190,China and Key Laboratory of Power Electronics and Electric Drives,Chinese Academy of Sciences,Beijing100190,China;Institute of Electrical Engineering,Chinese Academy of Sciences,Beijing100190,China
Abstract:For the traditional path following control method based on precise mathematical models, it is difficult to adapt to the complex and changeable driving environment. A path following control method based on terminal sliding mode control and active disturbance rejection control is proposed. Firstly, the path following control is simplified by constructing a desired yaw angle function that satisfies the condition that the lateral displacement deviation converges zero when the actual yaw angle of the vehicle converges the desired value. Then, the unmodelled dynamics of the system are estimated in real time by the extended state observer, and the non-singular terminal sliding mode is adopted to design the nonlinear error feedback control law to achieve fast and accurate yaw angle tracking control. Simulation results show that the designed controller can ensure that the vehicle runs stably while following the desired path quickly and accurately.
Keywords:
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号