首页 | 本学科首页   官方微博 | 高级检索  
     

钛单晶纳米柱拉压不对称性的分子动力学模拟
引用本文:李萍,储潜,严思梁,纪小虎,薛克敏.钛单晶纳米柱拉压不对称性的分子动力学模拟[J].稀有金属材料与工程,2019,48(6):1835-1840.
作者姓名:李萍  储潜  严思梁  纪小虎  薛克敏
作者单位:合肥工业大学材料科学与工程学院,合肥工业大学智能制造技术研究院,合肥工业大学材料科学与工程学院,合肥工业大学材料科学与工程学院,合肥工业大学材料科学与工程学院
基金项目:国家自然科学基金项目(51675154),
摘    要:本文基于分子动力学模拟,通过研究钛单晶纳米柱在拉伸和压缩下的力学响应特征及晶体结构演化行为,揭示其塑性变形机制。结果表明沿0001]晶向拉伸条件下主要塑性变形机制为伴生的{101 ?2}孪晶和基面层错;而沿0001]晶向压缩条件下,基面位错作为优先形核的缺陷参与到塑性变形过程,随后锥面位错出现并协调了轴向和横向变形,压缩条件下无孪晶产生。拉伸模拟过程中观察到一种有别于传统孪生的晶体再取向现象,其孪晶与基体间呈现基面/柱面对应关系。

关 键 词:分子动力学  钛单晶  晶体再取向  孪生  位错
收稿时间:2018/1/16 0:00:00
修稿时间:2018/1/28 0:00:00

Study on the Unsymmetry of Tension and Compression in Titanium Single-crystal Nanopillars Based on Molecular Dynamics Simulation
Li Ping,Chu Qian,Yan Siliang,Ji Xiaohu and Xue Kemin.Study on the Unsymmetry of Tension and Compression in Titanium Single-crystal Nanopillars Based on Molecular Dynamics Simulation[J].Rare Metal Materials and Engineering,2019,48(6):1835-1840.
Authors:Li Ping  Chu Qian  Yan Siliang  Ji Xiaohu and Xue Kemin
Affiliation:School of Materials and Science and Engineering,Hefei University of Technology,Intelligent Manufacturing Institute,Hefei University of Technology,School of Materials and Science and Engineering,Hefei University of Technology,School of Materials and Science and Engineering,Hefei University of Technology,School of Materials and Science and Engineering,Hefei University of Technology
Abstract:The plastic deformation mechanisms of the titanium single-crystal nanopillars under both tension and compression were studied with the molecular dynamics simulation method. In this work, the research focuses on two aspects around the microscopic deformation mechanisms: stress-strain analysis and the evolution of atomistic configuration. The results indicate that the {101 ?2} twinning and stacking fault dominate the tension deformation along the 0001] direction. The slip is the principal factor leading to the initial yielding and then the pyramidal slip occurs to coordinate both vertical and horizontal strains for the compression condition along the 0001] direction. Additionally, no twinning is found in compression. Besides the conventional {101 ?2} plane, semi-coherent basal-prismatic interfaces between parent and reoriented crystal were also observed under tensile loading.
Keywords:Molecular dynamics  titanium single-crystal  reoriented crystal  twinning  dislocation
点击此处可从《稀有金属材料与工程》浏览原始摘要信息
点击此处可从《稀有金属材料与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号