首页 | 本学科首页   官方微博 | 高级检索  
     

多元时间序列的Web Service QoS预测方法
引用本文:张鹏程,王丽艳,吉顺慧,李雯睿. 多元时间序列的Web Service QoS预测方法[J]. 软件学报, 2019, 30(6): 1742-1758
作者姓名:张鹏程  王丽艳  吉顺慧  李雯睿
作者单位:河海大学 计算机与信息学院, 江苏 南京 211100,河海大学 计算机与信息学院, 江苏 南京 211100,河海大学 计算机与信息学院, 江苏 南京 211100,南京晓庄学院 信息工程学院, 江苏 南京 211171
基金项目:国家自然科学基金(61572171,61702159,61202097);江苏省自然科学基金(BK20170893);中央高校基本科研业务费(2019B15414)
摘    要:为准确并多步预测Web服务的服务质量(quality of service,简称QoS),方便用户选择更好的Web服务,提出了一种基于多元时间序列的QoS预测方法MulA-LMRBF (multiple step forecasting with advertisement-levenberg marquardt radial basis function).充分考虑多个QoS属性序列之间的关联,采用平均位移法(average dimension,简称AD)确定相空间重构的嵌入维数和延迟时间,将QoS属性历史数据映射到一个动力系统中,近似恢复多个QoS属性之间的多维非线性关系.将短期服务提供商QoS广告数据加入数据集中,采用列文伯格-马夸尔特法(Levenberg-Marquardt,简称LM)算法改进的径向基(radial basis function,简称RBF)神经网络预测模型,动态更新神经网络的权重,提高预测精度,实现QoS动态多步预测.通过网络开源数据和自测数据的实验结果表明,该方法与传统方法相比有较好预测效果,更适合动态多步预测.

关 键 词:服务质量  多元时间序列  相空间重构  LM算法  RBF神经网络  动态多步预测
收稿时间:2017-02-24
修稿时间:2017-08-17

Web Service QoS Forecasting Approach Using Multivariate Time Series
ZHANG Peng-Cheng,WANG Li-Yan,JI Shun-Hui and LI Wen-Rui. Web Service QoS Forecasting Approach Using Multivariate Time Series[J]. Journal of Software, 2019, 30(6): 1742-1758
Authors:ZHANG Peng-Cheng  WANG Li-Yan  JI Shun-Hui  LI Wen-Rui
Affiliation:College of Computer and Information, Hohai University, Nanjing 211100, China,College of Computer and Information, Hohai University, Nanjing 211100, China,College of Computer and Information, Hohai University, Nanjing 211100, China and School of Information Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
Abstract:In order to accurately forecast quality of service (QoS) of different Web services with multi-step, and help users to choose the most suitable Web service at hand, this study proposes a novel QoS forecasting approach called MulA-LMRBF (multiple-step forecasting with advertisement by levenberg-marquardt improved radial basis function network) based on multivariate time series. Considering the correlation among different QoS attributes series, phase-space reconstruction is used to map historical multivariate QoS data into a dynamic system, where the multi-dimensional nonlinear relations of QoS attributes are completely restored. Average dimension (AD) is used to estimate the embedding dimension and delay time of reconstructed phase space. The short-term QoS advertisement data of service provider is also added to form a more comprehensive data set. Then, RBF (radial basis function) neural network improved by the Levenberg-Marquardt (LM) algorithm is used to update the weight of the neural network dynamically, which improves the forecasting accuracy and realizes the dynamic multiple-step forecasting. Experiments are conducted based on several public network data sets and self-collected data set. The experimental results demonstrate that MulA-LMRBF is better than previous approaches with high precise and is more suitable for multi-step forecasting.
Keywords:quality of service  multivariate time series  phase-space reconstruction  LM algorithm  RBF neural network  dynamic multiple step forecasting
点击此处可从《软件学报》浏览原始摘要信息
点击此处可从《软件学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号