首页 | 本学科首页   官方微博 | 高级检索  
     

结合滤波和深度玻尔兹曼机重构的指纹增强
引用本文:卞维新,丁世飞,张楠,张健,赵星宇. 结合滤波和深度玻尔兹曼机重构的指纹增强[J]. 软件学报, 2019, 30(6): 1886-1900
作者姓名:卞维新  丁世飞  张楠  张健  赵星宇
作者单位:中国矿业大学 计算机科学与技术学院, 江苏 徐州 221116;中国科学院 计算技术研究所 智能信息处理重点实验室, 北京 100190;安徽师范大学 计算机与信息学院, 安徽 芜湖 241002,中国矿业大学 计算机科学与技术学院, 江苏 徐州 221116;中国科学院 计算技术研究所 智能信息处理重点实验室, 北京 100190,中国矿业大学 计算机科学与技术学院, 江苏 徐州 221116;中国科学院 计算技术研究所 智能信息处理重点实验室, 北京 100190,中国矿业大学 计算机科学与技术学院, 江苏 徐州 221116;中国科学院 计算技术研究所 智能信息处理重点实验室, 北京 100190,中国矿业大学 计算机科学与技术学院, 江苏 徐州 221116;中国科学院 计算技术研究所 智能信息处理重点实验室, 北京 100190
基金项目:国家自然科学基金(61672522,61379101);安徽省自然科学基金(1708085MF145)
摘    要:指纹图像增强,是自动指纹识别系统中的重要环节.为弥补传统指纹图像增强算法的缺陷,提出一种指纹图像增强算法.在指纹块质量分级机制和复合窗口策略下,指纹图像首先在频域被具有方向选择性的方向高斯带通滤波器滤波增强;随后,二值增强指纹中的误增强区域在空域被具有方向选择性的深度玻尔兹曼机(DBM)重构.提出的方法结合了传统指纹增强算法与深度学习算法的优点,拥有很强的容错能力,能够完成对低质量指纹图像的有效增强.为了验证提出算法的性能,在公开的指纹数据库FVC2004上进行了大量实验,实验结果表明,相比于传统的指纹增强算法,提出的方法具有很强的鲁棒性,对高质量和低质量指纹均有不俗的增强表现.

关 键 词:指纹增强  块质量评价  方向高斯带通滤波器  深度玻尔兹曼机(DBM)
收稿时间:2017-06-01
修稿时间:2017-07-16

Combined Filtering and DBM Reconstructing for Fingerprint Enhancement
BIAN Wei-Xin,DING Shi-Fei,ZHANG Nan,ZHANG Jian and ZHAO Xing-Yu. Combined Filtering and DBM Reconstructing for Fingerprint Enhancement[J]. Journal of Software, 2019, 30(6): 1886-1900
Authors:BIAN Wei-Xin  DING Shi-Fei  ZHANG Nan  ZHANG Jian  ZHAO Xing-Yu
Affiliation:School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China;Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China;School of Computer and Information, Anhui Normal University, Wuhu 241002, China,School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China;Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China,School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China;Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China,School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China;Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China and School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China;Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
Abstract:The enhancement of fingerprint plays an important role in automatic fingerprint identification system. In order to make up for the shortcomings of the traditional fingerprint enhancement, this study proposes a novel algorithm by using orientation Gaussian bandpass filter (OGBPF) to enhance the fingerprint firstly, and then the deep Boltzmann machine (DBM) with orientation selection is employed to reconstruct these regions that are enhanced incorrectly in the first phase. The fingerprint is enhanced based on the quality grading scheme and the composite window strategy. In the proposed method, the traditional enhancement method and deep learning method complement one another perfectly. To validate the performance, the proposed method has been applied to fingerprint enhancement on the FVC2004 databases. Experiments show that, compared with the state-of-the-art enhancement methods, the proposed method is more accurate and more robust against noise, and can achieve better results.
Keywords:fingerprint enhancement  block quality assessment  orientation Gaussian bandpass filter  deep Boltzmann machine (DBM)
点击此处可从《软件学报》浏览原始摘要信息
点击此处可从《软件学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号