首页 | 本学科首页   官方微博 | 高级检索  
     

自适应改进双树复小波变换的齿轮箱故障诊断
引用本文:陈旭阳,韩振南,宁少慧. 自适应改进双树复小波变换的齿轮箱故障诊断[J]. 振动、测试与诊断, 2019, 39(5): 1016-1022
作者姓名:陈旭阳  韩振南  宁少慧
作者单位:(1.太原理工大学机械工程学院 太原,030024)(2.太原科技大学机械工程学院 太原,030024)
基金项目:(国家自然科学基金资助项目(50775157);山西省基础研究资助项目(2012011012-1);山西省高等学校留学回国人员科研资助项目(2011-12)
摘    要:针对双树复小波变换存在频率混叠以及参数需自定义的缺陷,提出自适应改进双树复小波变换的齿轮箱故障诊断方法。首先,利用双树复小波变换将信号进行分解和单支重构,采用粒子群算法将分解后分量峭度值作为适应度函数,选择双树复小波的最优分解层数;其次,对重构出的低频信号进行频谱分析提取故障特征,将单支重构后的各高频分量进行变分模态分解,通过峭度值获得各高频分量经变分模态分解后的主频率分量信号;最后,分析各主频率分量信号的频谱,识别齿轮箱的故障特征。结果表明,该方法与双树复小波变换和变分模态分解相比,不仅消除了频率混叠现象,提高了信噪比和频带选择的正确性,而且还提高了从强噪声环境中提取瞬态冲击特征的能力。

关 键 词:双树复小波变换;粒子群优化;变分模态分解;峭度值;齿轮箱;故障诊断

Gearbox Fault Diagnosis Based on Adaptive Modified Dual-tree Complex Wavelet Transform
CHEN Xuyang,HAN Zhennan,NING Shaohui. Gearbox Fault Diagnosis Based on Adaptive Modified Dual-tree Complex Wavelet Transform[J]. Journal of Vibration,Measurement & Diagnosis, 2019, 39(5): 1016-1022
Authors:CHEN Xuyang  HAN Zhennan  NING Shaohui
Affiliation:(1. School of Mechanical Engineering, Taiyuan University of Technology Taiyuan,030024, China)(2. School of Mechanical Engineering, Taiyuan University of Science and Technology Taiyuan,030024, China)
Abstract:In the light of frequency aliasing and parameter custom caused by doubletree complex wavelet transform, a fault diagnosis method of adaptive improved dual-tree complex wavelet transform is proposed. This method integrates dual-tree complex wavelet transform-variational mode decomposition (DTCWT-VMD). First, the signal is decomposed and reconstructed by dual-tree complex wavelet transform. Particle swarm optimization (PSO) is used to determine the component kurtosis value as a fitness function to select the optimal decomposition level of doubletree complex wavelet. Second, the reconstructed low-frequency signal is subjected to spectrum analysis to extract the fault characteristic signal. The high-frequency components are reconstructed by variational mode decomposition, and through the kurtosis value, the main frequency component signal of each high-frequency component decomposed by variational mode is obtained. Finally, the spectrum of the main frequency component signals is analyzed to identify the fault frequency of the gearbox. The experimental results show that the proposed method eliminates frequency aliasing and improves the correctness of signal-to-noise ratio and frequency band selection compared with that process by the dual-tree complex wavelet transform and variational mode decomposition. Besides, it improves the ability to extract transient shock characteristics from a strong noisy environment.
Keywords:Dual-tree complex wavelet transform   particle swarm optimization   variational mode decomposition   kurtosis value   gearbox   fault diagnosis
本文献已被 CNKI 等数据库收录!
点击此处可从《振动、测试与诊断》浏览原始摘要信息
点击此处可从《振动、测试与诊断》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号