基于级联CNN的SAR图像舰船目标检测算法 |
| |
作者姓名: | 李健伟 曲长文 彭书娟 |
| |
作者单位: | 海军航空大学研究生三队,山东烟台,264001;海军航空大学,山东烟台,264001 |
| |
基金项目: | 国家自然科学基金项目(61571454). |
| |
摘 要: | 针对合成孔径雷达(SAR)图像中舰船目标稀疏的特点,提出一种基于级联卷积神经网络(CNN)的SAR图像舰船目标检测方法.将候选区域提取方法BING与目标检测方法Fast R-CNN相结合,并采用级联CNN设计,可同时兼顾舰船检测的准确率和速度.首先,针对SAR图像中相干斑噪声影响梯度检测的问题,在原有梯度算子的基础上增加平滑算子,并对图像尺寸个数和候选框个数进行适应性改进,使其提取到的候选窗口更快更准;然后,设计级联结构的Fast R-CNN检测框架,前端简单的CNN负责排除明显的非目标区域,后端复杂的CNN对高概率候选区域进行分类和位置回归,整个结构可以保证快速准确地对舰船这种稀疏目标进行检测;最后,设计一种联合优化方法对多任务的目标函数进行优化,使其更快更好地收敛.在SAR图像舰船检测数据集SSDD上的实验结果显示,所提出的方法相比于原始Fast R-CNN和Faster R-CNN检测方法,检测精度从65.2%和70.1%提高到73.5%,每张图像的处理时间从2235ms和198ms下降到113ms.
|
关 键 词: | 合成孔径雷达图像 舰船 检测 级联 卷积神经网络 FastR-CNN |
本文献已被 万方数据 等数据库收录! |
| 点击此处可从《控制与决策》浏览原始摘要信息 |
|
点击此处可从《控制与决策》下载全文 |
|