首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
基于自适应粒子滤波器的物体跟踪
作者姓名:
夏利民
张良春
作者单位:
中南大学信息科学与工程学院,长沙 410075
基金项目:
国家自然科学基金项目(79816101);湖南省自然科学基金项目(05JJ30121)
摘 要:
利用分类概念及粒子滤波理论,提出了一种基于自适应粒子滤波器的物体跟踪算法。将Boosting算法引入粒子滤波器,构建了自适应粒子滤波器,该方法首先利用背景信息和目标信息建立特征分类器,将分类器的输出结果作为粒子滤波系统观测的重要信息,进行粒子权值的计算,并在跟踪过程中不断更新特征分类器,从而自适应地更新粒子的权值。实验结果表明,该算法可以根据背景信息的不同自适应地选择特征,对于存在遮挡、形变及背景干扰等情况,依然可以很好地对目标进行稳定跟踪。
关 键 词:
粒子滤波器
自适应特征选择
跟踪
Boosting算法
收稿时间:
2007-01-14
修稿时间:
2007-07-03
本文献已被
维普
万方数据
等数据库收录!
点击此处可从《中国图象图形学报》浏览原始摘要信息
点击此处可从《中国图象图形学报》下载全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号