Receptor-Targeted,Magneto-Mechanical Stimulation of Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells |
| |
Authors: | Bin Hu Alicia J El Haj Jon Dobson |
| |
Affiliation: | 1.Institute of Science and Technology in Medicine, Guy Hilton Research Center, Keele University, Thornburrow Drive, Hartshill, Stoke on Trent, ST4 7QB, UK; E-Mails: (B.H.); (A.J.E.H.);2.J. Crayton Puritt Family Department of Biomedical Engineering, Department of Materials Science and Engineering, Institute of Cell Engineering and Regenerative Medicine (ICERM), University of Florida, Gainesville, FL 32611, USA |
| |
Abstract: | Mechanical cues are employed to promote stem cell differentiation and functional tissue formation in tissue engineering and regenerative medicine. We have developed a Magnetic Force Bioreactor (MFB) that delivers highly targeted local forces to cells at a pico-newton level, utilizing magnetic micro- and nano-particles to target cell surface receptors. In this study, we investigated the effects of magnetically targeting and actuating specific two mechanical-sensitive cell membrane receptors—platelet-derived growth factor receptor α (PDGFRα) and integrin ανβ3. It was found that a higher mineral-to-matrix ratio was obtained after three weeks of magneto-mechanical stimulation coupled with osteogenic medium culture by initially targeting PDGFRα compared with targeting integrin ανβ3 and non-treated controls. Moreover, different initiation sites caused a differentiated response profile when using a 2-day-lagged magneto-mechanical stimulation over culture periods of 7 and 12 days). However, both resulted in statistically higher osteogenic marker genes expression compared with immediate magneto-mechanical stimulation. These results provide insights into important parameters for designing appropriate protocols for ex vivo induced bone formation via magneto-mechanical actuation. |
| |
Keywords: | magnetic force bioreactor tissue engineering mechanotransduction human mesenchymal stem cells osteogenic differentiation |
|
|