首页 | 本学科首页   官方微博 | 高级检索  
     


Metallization defect detection in 3D integrated components using scanning acoustic microscopy and acoustic simulations
Affiliation:1. Materials Center Leoben Forschung GmbH (MCL), Microelectronics Department, Leoben, Austria;2. ams AG, Premstätten, Austria
Abstract:In the context of More than Moore 3D integration concepts, the μm to nm sized failure detection and analysis represents a highly demanding task. In this work, micron sized artificially induced metallization defects in open TSVs are detected by scanning acoustic microscopy (SAM). Micro X-ray computed tomography (μXCT) and scanning electron microscopy (SEM) are used to validate the SAM results. Notably, the SAM results show that the failures for certain TSVs are located at a different position as illustrated by μXCT and SEM. In order to interpret these controversial results, 2D elastodynamic finite integration technique (EFIT) simulations are performed. We discuss the results by taking the excitation of surface acoustic waves (SAWs) or Rayleigh waves into account which are leading to characteristic interference patterns within the TSV. The simulation and understanding of such interference effects can be highly beneficial for the use of SAM with respect to modern failure detection and analyses.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号