首页 | 本学科首页   官方微博 | 高级检索  
     


Hybrid spectral/finite element analysis of dynamic delamination of patterned thin films
Authors:Phuong Tran  Philippe H Geubelle  Nancy R Sottos
Affiliation:a Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 158 MEB, 1206 W Green Street, Urbana, IL 61801, United States
b Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, 306 Talbot Laboratory, 104 S Wright Street, IL 61801, United States
c Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W Green Street, Urbana, IL 61801, United States
Abstract:A combined spectral and finite element analysis is performed to investigate the dynamic edge delamination of patterned thin films from a substrate. The analysis is motivated by an emerging experimental technique in which high-amplitude laser-induced stress waves initiate progressive interfacial debonding of thin film interfaces. The numerical method relies on the spectral representation of the elastodynamic solutions for the substrate and the finite element model for the thin film. A cohesive model is introduced along the interface of the bimaterial system to capture the decohesion process. The important role of the film inertia on the crack extension and the appearance of the mixed-mode failure are demonstrated by observing the traction stress evolution at various points along the bond line. Parametric studies on the effect of film thickness, interface fracture toughness, loading pulse shape and amplitude on the debonding process are performed. A semi-analytical investigation on the inertial effect is carried out to predict the final crack length as a function of the film thickness and pulse amplitude.
Keywords:Thin film  Adhesion  Delamination  Dynamic fracture  Laser pulse  Spectral method  Cohesive model
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号