首页 | 本学科首页   官方微博 | 高级检索  
     


Natural convection in attics subject to instantaneous and ramp cooling boundary conditions
Authors:Suvash C Saha  John C Patterson
Affiliation:a School of Engineering and Physical Sciences, James Cook University, Douglas Campus, Townsville, QLD 4811, Australia
b School of Civil Engineering, The University of Sydney, NSW 2006, Australia
Abstract:A fundamental study of the fluid dynamics inside an attic shaped triangular enclosure with cold upper walls and adiabatic horizontal bottom wall is reported in this study. The transient behaviour of the attic fluid which is relevant to our daily life is examined based on a scaling analysis. The transient phenomenon begins with the instantaneous cooling and the cooling with linear decreases of temperature up to some specific time (ramp time) and then maintain constant of the upper sloped walls. It is shown that both inclined walls develop a thermal boundary layer whose thicknesses increase towards steady state or quasi-steady values. A proper identification of the time scales, the velocity and the thickness relevant to the flow that develops inside the cavity makes it possible to predict theoretically the basic flow features that will survive once the thermal flow in the enclosure reaches a steady state. A time scale for the cooling-down of the whole cavity together with the heat transfer scales through the inclined walls has also been obtained through scaling analysis. All scales are verified by the numerical simulations.
Keywords:Natural convection  Ramp cooling  Boundary layer  Unsteady flow  Cooling-down time  Nusselt number
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号