首页 | 本学科首页   官方微博 | 高级检索  
     


Synaptic relationships between the chorda tympani and tyrosine hydroxylase-immunoreactive dendritic processes in the gustatory zone of the nucleus of the solitary tract in the hamster
Authors:BJ Davis
Affiliation:Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore 21201-1509, USA. bdavis@umabnet.ab.umd.edu
Abstract:The toxic lectin ricin was applied to the hamster chorda tympani (CT), producing anterograde degeneration of its terminal boutons within the gustatory zone of the nucleus of the solitary tract (NST). Immunocytochemistry was subsequently performed with antiserum against tyrosine hydroxylase (TH), and the synaptic relationships between degenerating CT terminal boutons and either TH-immunoreactive or unlabeled dendritic processes were examined at the electron microscopic level. Degenerating CT terminal boutons formed asymmetric axodendritic synapses and contained small, clear, spherical synaptic vesicles that were densely packed and evenly distributed throughout the ending, with no accumulation at the active synaptic. The degenerating CT terminated on the dendrites of TH-immunoreactive neurons in 36% (35/97) of the cases. The most frequent termination pattern involved the CT and two or three other inputs in synaptic contact with a single immunoreactive dendrite, resulting in a glomerular-like structure that was enclosed by glial processes. In 64% (62/97) of the cases, the degenerating CT was in synaptic contact with unlabeled dendrites, often forming a calyx-like synaptic profile that surrounded much of the perimeter of a single unlabeled dendrite. These results indicate that the TH-immunoreactive neurons of the gustatory NST receive direct input from the CT and taste receptors of the anterior tongue and that the termination patterns of the CT vary with its target neuron in the gustatory NST. The glomerular-like structure that characterizes many of the terminations of the CT provides an opportunity for the convergence of several functionally distinct inputs (both gustatory and somatosensory) onto putative dopaminergic neurons that may shape their responsiveness to the stimulation of the oral cavity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号