首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的乳腺癌病理图像分类研究综述
引用本文:李华,杨嘉能,刘凤,南方哲,钱育蓉. 基于深度学习的乳腺癌病理图像分类研究综述[J]. 计算机工程与应用, 2020, 56(13): 1-11. DOI: 10.3778/j.issn.1002-8331.2001-0220
作者姓名:李华  杨嘉能  刘凤  南方哲  钱育蓉
作者单位:1.新疆大学 软件学院,乌鲁木齐 8300462.新疆维吾尔自治区信号检测与处理重点实验室,乌鲁木齐 830046
基金项目:国家自然科学基金;国家自然科学基金联合基金;自治区研究生创新项目;智能多模态信息处理团队项目
摘    要:准确、高效的乳腺癌病理图像分类是计算机辅助诊断的重要研究内容之一。随着机器学习技术的发展,深度学习日渐成为一种有效的乳腺癌病理图像分类处理方法。分析了乳腺癌病理图像分类方法及目前存在的问题;介绍了四种相关的深度学习模型,对基于深度学习的乳腺癌病理图像分类方法进行梳理,并通过实验对比分析现有模型的性能;最后对乳腺癌病理图像分类的关键问题进行了总结,并讨论了未来研究的发展趋势。

关 键 词:计算机辅助诊断  乳腺癌病理图像  图像分类  深度学习

Survey of Breast Cancer Histopathology Image Classification Based on Deep Learning
LI Hua,YANG Jianeng,LIU Feng,NAN Fangzhe,QIAN Yurong. Survey of Breast Cancer Histopathology Image Classification Based on Deep Learning[J]. Computer Engineering and Applications, 2020, 56(13): 1-11. DOI: 10.3778/j.issn.1002-8331.2001-0220
Authors:LI Hua  YANG Jianeng  LIU Feng  NAN Fangzhe  QIAN Yurong
Affiliation:1.College of Software, Xinjiang University, Urumqi 830046, China2.Key Laboratory of Signal Detection and Processing in Xinjiang Uygur Autonomous Region, Urumqi 830046, China
Abstract:Accurate and efficient histopathological image classification of breast cancer is one of the important contents of computer-aided diagnosis. With the development of machine learning technology, deep learning has gradually become an effective method to classify breast cancer histopathological images. Firstly, the classification methods of breast cancer histopathological image and the existing problems are analyzed. Secondly, four relevant deep learning models are introduced, and the classification methods of breast cancer histopathological image based on deep learning are combed, and the performance of the existing models is compared and analyzed through experiments. Finally, the key issues of histopathological image classification of breast cancer are summarized and the future research trends are discussed.
Keywords:computer aided diagnosis  breast cancer histopathological image  image classification  deep learning  
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号