首页 | 本学科首页   官方微博 | 高级检索  
     

改进的自适应参数DBSCAN聚类算法
引用本文:王光,林国宇. 改进的自适应参数DBSCAN聚类算法[J]. 计算机工程与应用, 2020, 56(14): 45-51. DOI: 10.3778/j.issn.1002-8331.1908-0501
作者姓名:王光  林国宇
作者单位:辽宁工程技术大学 软件学院,辽宁 葫芦岛 125105
摘    要:针对传统DBSCAN算法需要人工输入Eps和MinPts参数,且参数选择不合理导致聚类准确率低的问题,提出了一种改进的自适应参数密度聚类算法。采用核密度估计确定Eps和MinPts参数的合理区间,通过分析数据局部密度特点确定簇数,根据合理区间内的参数值进行聚类,计算满足簇数条件时的轮廓系数,最大轮廓系数对应的参数即为最优参数。在4种经典数据集上进行对比实验,结果表明,该算法能够自动选择最优的Eps和MinPts参数,准确率平均提高6.1%。

关 键 词:密度聚类  DBSCAN算法  自适应  核密度估计  参数寻优

Improved Adaptive Parameter DBSCAN Clustering Algorithm
WANG Guang,LIN Guoyu. Improved Adaptive Parameter DBSCAN Clustering Algorithm[J]. Computer Engineering and Applications, 2020, 56(14): 45-51. DOI: 10.3778/j.issn.1002-8331.1908-0501
Authors:WANG Guang  LIN Guoyu
Affiliation:College of Software, Liaoning Technical University, Huludao, Liaoning 125105, China
Abstract:Aiming at the problem that traditional DBSCAN algorithm needs to input [Eps] and [MinPts] parameters manually, and improper parameter selection leads to low clustering accuracy, an improved adaptive parameter density clustering algorithm is proposed. Firstly, the kernel density estimation is used to determine the reasonable interval of [Eps] and [MinPts] parameters, and the cluster number is determined by analyzing the local density characteristics of the data. Then, the clustering is performed according to the parameter values within the reasonable interval. Finally, the contour coefficients satisfying the cluster number condition are calculated, and the parameter corresponding to the maximum contour coefficient is the optimal parameter. The comparison experiments on four classical datasets show that the algorithm can automatically select the optimal [Eps] and [MinPts] parameters, and the accuracy is improved by 6.1% on average.
Keywords:density clustering  DBSCAN algorithm  self-adaptive  kernel density estimation  parameter optimization  
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号