首页 | 本学科首页   官方微博 | 高级检索  
     

基于注意力机制修正网络的行人属性识别
引用本文:李辰征,陈实,卞春江,陈红珍. 基于注意力机制修正网络的行人属性识别[J]. 计算机工程与设计, 2020, 41(5): 1404-1410
作者姓名:李辰征  陈实  卞春江  陈红珍
作者单位:中国科学院国家空间科学中心复杂航天系统综合电子与信息技术重点实验室,北京100190;中国科学院大学计算机科学与技术学院,北京100049;中国科学院国家空间科学中心复杂航天系统综合电子与信息技术重点实验室,北京100190
基金项目:国防科技创新特区基金项目
摘    要:针对现有行人属性识别方法模型复杂,识别性能较低的问题,提出一种端到端的行人属性识别方法。构建注意力机制修正网络,在主干网络的不同卷积层后添加注意力分支,以提取注意力特征关注属性相关空域;提出一种注意力机制辅助训练方法,将注意力分支与主网络在预测级进行损失融合,通过梯度反向传播修正主网络权重,实现主网络的有效训练;在预测阶段,利用权重修正后的主网络实现属性识别。在RAP数据集上的实验结果表明,提出方法在没有额外辅助信息、不增加主网络体积和计算量的情况下,提升了行人属性识别性能。

关 键 词:行人属性识别  卷积神经网络  注意力机制  权重修正  多尺度分支

Pedestrian attribute recognition based on attention mechanism refined network
LI Chen-zheng,CHEN Shi,BIAN Chun-jiang,CHEN Hong-zhen. Pedestrian attribute recognition based on attention mechanism refined network[J]. Computer Engineering and Design, 2020, 41(5): 1404-1410
Authors:LI Chen-zheng  CHEN Shi  BIAN Chun-jiang  CHEN Hong-zhen
Affiliation:(Key Laboratory of Intergrated Avionics and Information Technology for Complex Aerospace System,National Space Science Center,Chinese Academy of Sciences,Beijing 100190,China;School of Computer Science and Technology,University of Chinese Academy Sciences,Beijing 100049,China)
Abstract:Aiming at the problems that the models of pedestrian attribute recognition are complex and the performance still needs to be improved,an end-to-end method was proposed.An attention mechanism refined network was constructed.Several attention branches were added behind different convolutional layers of the main network to extract attention features which focused on the attention-related spatial area.An attention-mechanism-assisted training method was proposed,the losses of attention branches and main network were aggregated at prediction level.The weights of the main network were refined by attention branches via error back propagation,and the main network was trained more effectively.In prediction stage,the refined main network was used for attribute recognition.Experimental results on RAP dataset show that,the proposed method can effectively improve the pedestrian attribute recognition performance without increasing the volume and calculation of the main network and additional information.
Keywords:pedestrian attribute recognition  convolution neural network  attention mechanism  weight refine  multi-scale branches
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号